The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly int...The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better.展开更多
Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic pro...Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance and forecast accuracy.The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups.In light of research investigations,it is vital to consider age as one of the key criteria when choosing the subjects.The younger subjects are more susceptible to the perishable side than the older onset.The proposed investigation concentrated on the younger onset.The research used deep learning models and neuroimages to diagnose and categorize the disease at its early stages automatically.The proposed work is executed in three steps.The 3D input images must first undergo image pre-processing using Weiner filtering and Contrast Limited Adaptive Histogram Equalization(CLAHE)methods.The Transfer Learning(TL)models extract features,which are subsequently compressed using cascaded Auto Encoders(AE).The final phase entails using a Deep Neural Network(DNN)to classify the phases of AD.The model was trained and tested to classify the five stages of AD.The ensemble ResNet-18 and sparse autoencoder with DNN model achieved an accuracy of 98.54%.The method is compared to state-of-the-art approaches to validate its efficacy and performance.展开更多
To pursue the outperformance of deep nets in learning,we construct a deep net with three hidden layers and prove that,implementing the empirical risk minimization(ERM)on this deep net,the estimator can theoretically r...To pursue the outperformance of deep nets in learning,we construct a deep net with three hidden layers and prove that,implementing the empirical risk minimization(ERM)on this deep net,the estimator can theoretically realize the optimal learning rates without the classical saturation problem.In other words,deepening the networks with only three hidden layers can overcome the saturation and not degrade the optimal learning rates.The obtained results underlie the success of deep nets and provide a theoretical guidance for deep learning.展开更多
Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontroll...Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images.展开更多
At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achievi...At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achieving uniform and intensive acquisition,which makes complete seismic data collection impossible.Therefore,data reconstruction is required in the processing link to ensure imaging accuracy.Deep learning,as a new field in rapid development,presents clear advantages in feature extraction and modeling.In this study,the convolutional neural network deep learning algorithm is applied to seismic data reconstruction.Based on the convolutional neural network algorithm and combined with the characteristics of seismic data acquisition,two training strategies of supervised and unsupervised learning are designed to reconstruct sparse acquisition seismic records.First,a supervised learning strategy is proposed for labeled data,wherein the complete seismic data are segmented as the input of the training set and are randomly sampled before each training,thereby increasing the number of samples and the richness of features.Second,an unsupervised learning strategy based on large samples is proposed for unlabeled data,and the rolling segmentation method is used to update(pseudo)labels and training parameters in the training process.Through the reconstruction test of simulated and actual data,the deep learning algorithm based on a convolutional neural network shows better reconstruction quality and higher accuracy than compressed sensing based on Curvelet transform.展开更多
Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,...Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,a novel fault diagnostic method is developed for both diagnostics and detection of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data.The detection of novelties is based on the reconstruction error.Moreover,the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function,instead of performing the pre-training and fine-tuning phases required for classical DNNs.The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer.The results show that its performance is satisfactory both in detection of novelties and fault diagnosis,outperforming other state-of-the-art methods.This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect,but also detect unknown types of defects.展开更多
In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficien...In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.展开更多
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive...Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters.展开更多
Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed...Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed.展开更多
Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un...Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.展开更多
The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWa...The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWave massive MIMO channels can be extracted and the sparse channel supports can be learnt by the multi-layer CNN-based network through training.Then accurate channel inference can be efficiently implemented using the trained network.The estimation accuracy and spectrum efficiency can be further improved by fully utilizing the spatial correlation among the sparse channel supports of different antennas.It is verified by simulation results that the proposed deep CNN-based scheme significantly outperforms the state-of-the-art benchmarks in both accuracy and spectrum efficiency.展开更多
Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade.One of the most tedious tasks is to track a suspect once a crime is co...Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade.One of the most tedious tasks is to track a suspect once a crime is committed.As most of the crimes are committed by individuals who have a history of felonies,it is essential for a monitoring system that does not just detect the person’s face who has committed the crime,but also their identity.Hence,a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network(DNN)model which employs a Single Shot Multibox Detector for detection of face and an auto-encoder model in which the encoder part is used for matching the captured facial images with the criminals has been proposed.After detection and extraction of the face in the image by face cropping,the captured face is then compared with the images in the CriminalDatabase.The comparison is performed by calculating the similarity value between each pair of images that are obtained by using the Cosine Similarity metric.After plotting the values in a graph to find the threshold value,we conclude that the confidence rate of the encoder model is 0.75 and above.展开更多
Big data analytics in business intelligence do not provide effective data retrieval methods and job scheduling that will cause execution inefficiency and low system throughput.This paper aims to enhance the capability...Big data analytics in business intelligence do not provide effective data retrieval methods and job scheduling that will cause execution inefficiency and low system throughput.This paper aims to enhance the capability of data retrieval and job scheduling to speed up the operation of big data analytics to overcome inefficiency and low throughput problems.First,integrating stacked sparse autoencoder and Elasticsearch indexing explored fast data searching and distributed indexing,which reduces the search scope of the database and dramatically speeds up data searching.Next,exploiting a deep neural network to predict the approximate execution time of a job gives prioritized job scheduling based on the shortest job first,which reduces the average waiting time of job execution.As a result,the proposed data retrieval approach outperforms the previous method using a deep autoencoder and Solr indexing,significantly improving the speed of data retrieval up to 53%and increasing system throughput by 53%.On the other hand,the proposed job scheduling algorithmdefeats both first-in-first-out andmemory-sensitive heterogeneous early finish time scheduling algorithms,effectively shortening the average waiting time up to 5%and average weighted turnaround time by 19%,respectively.展开更多
The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the mai...The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.展开更多
基金Researchers Supporting Project Number(RSP2024R206),King Saud University,Riyadh,Saudi Arabia.
文摘The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better.
文摘Alzheimer’s Disease(AD)is a progressive neurological disease.Early diagnosis of this illness using conventional methods is very challenging.Deep Learning(DL)is one of the finest solutions for improving diagnostic procedures’performance and forecast accuracy.The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups.In light of research investigations,it is vital to consider age as one of the key criteria when choosing the subjects.The younger subjects are more susceptible to the perishable side than the older onset.The proposed investigation concentrated on the younger onset.The research used deep learning models and neuroimages to diagnose and categorize the disease at its early stages automatically.The proposed work is executed in three steps.The 3D input images must first undergo image pre-processing using Weiner filtering and Contrast Limited Adaptive Histogram Equalization(CLAHE)methods.The Transfer Learning(TL)models extract features,which are subsequently compressed using cascaded Auto Encoders(AE).The final phase entails using a Deep Neural Network(DNN)to classify the phases of AD.The model was trained and tested to classify the five stages of AD.The ensemble ResNet-18 and sparse autoencoder with DNN model achieved an accuracy of 98.54%.The method is compared to state-of-the-art approaches to validate its efficacy and performance.
基金Supported by the National Natural Science Foundation of China(61806162,12271431,12171388)Shaanxi Mathematical Basic Science Research Project 22JSQ023。
文摘To pursue the outperformance of deep nets in learning,we construct a deep net with three hidden layers and prove that,implementing the empirical risk minimization(ERM)on this deep net,the estimator can theoretically realize the optimal learning rates without the classical saturation problem.In other words,deepening the networks with only three hidden layers can overcome the saturation and not degrade the optimal learning rates.The obtained results underlie the success of deep nets and provide a theoretical guidance for deep learning.
基金supported by the National Natural Science Foundation of China(Grant No.61871380)the Shandong Provincial Natural Science Foundation(Grant No.ZR2020MF019)Beijing Natural Science Foundation(Grant No.4172034).
文摘Biological slices are an effective tool for studying the physiological structure and evolutionmechanism of biological systems.However,due to the complexity of preparation technology and the presence of many uncontrollable factors during the preparation processing,leads to problems such as difficulty in preparing slice images and breakage of slice images.Therefore,we proposed a biological slice image small-scale corruption inpainting algorithm with interpretability based on multi-layer deep sparse representation,achieving the high-fidelity reconstruction of slice images.We further discussed the relationship between deep convolutional neural networks and sparse representation,ensuring the high-fidelity characteristic of the algorithm first.A novel deep wavelet dictionary is proposed that can better obtain image prior and possess learnable feature.And multi-layer deep sparse representation is used to implement dictionary learning,acquiring better signal expression.Compared with methods such as NLABH,Shearlet,Partial Differential Equation(PDE),K-Singular Value Decomposition(K-SVD),Convolutional Sparse Coding,and Deep Image Prior,the proposed algorithm has better subjective reconstruction and objective evaluation with small-scale image data,which realized high-fidelity inpainting,under the condition of small-scale image data.And theOn2-level time complexitymakes the proposed algorithm practical.The proposed algorithm can be effectively extended to other cross-sectional image inpainting problems,such as magnetic resonance images,and computed tomography images.
基金This study was supported by the National Natural Science Foundation of China under the project‘Research on the Dynamic Location of Receiver Points and Wave Field Separation Technology Based on Deep Learning in OBN Seismic Exploration’(No.42074140).
文摘At present,the acquisition of seismic data is developing toward high-precision and high-density methods.However,complex natural environments and cultural factors in many exploration areas cause difficulties in achieving uniform and intensive acquisition,which makes complete seismic data collection impossible.Therefore,data reconstruction is required in the processing link to ensure imaging accuracy.Deep learning,as a new field in rapid development,presents clear advantages in feature extraction and modeling.In this study,the convolutional neural network deep learning algorithm is applied to seismic data reconstruction.Based on the convolutional neural network algorithm and combined with the characteristics of seismic data acquisition,two training strategies of supervised and unsupervised learning are designed to reconstruct sparse acquisition seismic records.First,a supervised learning strategy is proposed for labeled data,wherein the complete seismic data are segmented as the input of the training set and are randomly sampled before each training,thereby increasing the number of samples and the richness of features.Second,an unsupervised learning strategy based on large samples is proposed for unlabeled data,and the rolling segmentation method is used to update(pseudo)labels and training parameters in the training process.Through the reconstruction test of simulated and actual data,the deep learning algorithm based on a convolutional neural network shows better reconstruction quality and higher accuracy than compressed sensing based on Curvelet transform.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005103,71801046,51775112,51975121)Guangdong Province Basic and Applied Basic Research Foundation of China(Grant No.2019B1515120095)+1 种基金Intelligent Manufacturing PHM Innovation Team Program(Grant Nos.2018KCXTD029,TDYB2019010)MoST International Cooperation Program(6-14).
文摘Supervised fault diagnosis typically assumes that all the types of machinery failures are known.However,in practice unknown types of defect,i.e.,novelties,may occur,whose detection is a challenging task.In this paper,a novel fault diagnostic method is developed for both diagnostics and detection of novelties.To this end,a sparse autoencoder-based multi-head Deep Neural Network(DNN)is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data.The detection of novelties is based on the reconstruction error.Moreover,the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function,instead of performing the pre-training and fine-tuning phases required for classical DNNs.The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer.The results show that its performance is satisfactory both in detection of novelties and fault diagnosis,outperforming other state-of-the-art methods.This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect,but also detect unknown types of defects.
文摘In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.
文摘Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters.
文摘Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed.
基金supported in part by the National Natural Science Foundation of China(No.51606213)the National Major Science and Technology Projects(No.J2019-III-0010-0054)。
文摘Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.
基金This work is supported in part by the National Natural Science Foundation of China under grants 61901403,61971366 and 61971365in part by the Youth Innovation Fund of Xiamen under grant 3502Z20206039in part by the Natural Science Foundation of Fujian Province of China under grant 2019J05001.
文摘The deep convolutional neural network(CNN)is exploited in this work to conduct the challenging channel estimation for mmWave massive multiple input multiple output(MIMO)systems.The inherent sparse features of the mmWave massive MIMO channels can be extracted and the sparse channel supports can be learnt by the multi-layer CNN-based network through training.Then accurate channel inference can be efficiently implemented using the trained network.The estimation accuracy and spectrum efficiency can be further improved by fully utilizing the spatial correlation among the sparse channel supports of different antennas.It is verified by simulation results that the proposed deep CNN-based scheme significantly outperforms the state-of-the-art benchmarks in both accuracy and spectrum efficiency.
文摘Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade.One of the most tedious tasks is to track a suspect once a crime is committed.As most of the crimes are committed by individuals who have a history of felonies,it is essential for a monitoring system that does not just detect the person’s face who has committed the crime,but also their identity.Hence,a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network(DNN)model which employs a Single Shot Multibox Detector for detection of face and an auto-encoder model in which the encoder part is used for matching the captured facial images with the criminals has been proposed.After detection and extraction of the face in the image by face cropping,the captured face is then compared with the images in the CriminalDatabase.The comparison is performed by calculating the similarity value between each pair of images that are obtained by using the Cosine Similarity metric.After plotting the values in a graph to find the threshold value,we conclude that the confidence rate of the encoder model is 0.75 and above.
基金supported and granted by the Ministry of Science and Technology,Taiwan(MOST110-2622-E-390-001 and MOST109-2622-E-390-002-CC3).
文摘Big data analytics in business intelligence do not provide effective data retrieval methods and job scheduling that will cause execution inefficiency and low system throughput.This paper aims to enhance the capability of data retrieval and job scheduling to speed up the operation of big data analytics to overcome inefficiency and low throughput problems.First,integrating stacked sparse autoencoder and Elasticsearch indexing explored fast data searching and distributed indexing,which reduces the search scope of the database and dramatically speeds up data searching.Next,exploiting a deep neural network to predict the approximate execution time of a job gives prioritized job scheduling based on the shortest job first,which reduces the average waiting time of job execution.As a result,the proposed data retrieval approach outperforms the previous method using a deep autoencoder and Solr indexing,significantly improving the speed of data retrieval up to 53%and increasing system throughput by 53%.On the other hand,the proposed job scheduling algorithmdefeats both first-in-first-out andmemory-sensitive heterogeneous early finish time scheduling algorithms,effectively shortening the average waiting time up to 5%and average weighted turnaround time by 19%,respectively.
基金supported by the Aeronautical Science Foundation(2017ZC53033).
文摘The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.