期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Deep mine cooling,a case for Northern Ontario:Part Ⅰ 被引量:2
1
作者 D. Millar K. Trapani A. Romero 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期721-727,共7页
Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock t... Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock temperature, mining operations and climatic conditions. A breakdown of the various heat sources is outlined, for an underground mine producing 3500 tonnes per day of broken rock, taking into consideration the latent and sensible portions of that heat to properly assess the wet bulb global temperature. The resulting thermal loads indicate that cooling efforts would be needed both at surface and underground to maintain the temperature underground within the legal threshold. In winter the air might also have to be heated at surface and cooled underground, to ensure that icing does not occur in the inlet ventilation shaft-the main reason why coolin~ cannot be focussed solely at surface. 展开更多
关键词 Thermal loads Cooling underground mining deep mining HVAC mining
下载PDF
Deep mine cooling, a case for Northern Ontario:Part Ⅱ 被引量:2
2
作者 Trapani K. Romero A. Millar D. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1033-1042,共10页
Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed h... Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed herein include mechanical and natural cooling systems, ranging from mechanical chillers to seasonal thermal storages. The economic and operating parameters for each technology were estimated and evaluated according to the mine's energy loads. Including consideration of any combined heat and power benefits of the technology, cooling tower requirements, etc., the resulting cost of implementation for each technology could be ranked. This showed that the natural thermal storage systems and conventional chillers were the most cost-effective, mainly since the natural systems had very low operating cost and the chillers had relatively low capital costs. 展开更多
关键词 Thermal loads Cooling underground mining deep mining HVAC mining
全文增补中
Rock creep modeling based on discontinuous deformation analysis 被引量:2
3
作者 Gao Yanan Gao Feng Manchu Ronald Yeung 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期757-761,共5页
Creep is one of the major problems of deep underground mining that must be studied theoretically,experimentally,and numerically over a long period.Experiments and feld tests are methods which can directly and more acc... Creep is one of the major problems of deep underground mining that must be studied theoretically,experimentally,and numerically over a long period.Experiments and feld tests are methods which can directly and more accurately describe the engineering practices as compared with others.However,these approaches are also time-consuming because creep problem of rock engineering,such as the roadway/tunnel squeezing phenomenon,usually lasts from several months to a few years.A numerical method can be employed to overcome this time-consuming problem.The discontinuous deformation analysis(DDA)method was originated in 1984 and received considerable attention from geo-engineers and researchers.The current paper discusses the creep calculation methods using the continuous and the discontinuous methods,and proposes a creep analysis method based on DDA.The method proposed in this paper can directly change the stiffness matrix while inheriting the advantages of the original DDA.Applying this method does not require any changes in the contact part of DDA.Thus,this method does not have any effect on the open–close iteration and convergence and can solve the creep problem,while maintaining the advantages of the original DDA.We theorized that creep problems are static problems,and based on this,the work using DDA in this study was divided into two parts:(1)addition of a new loop for the original DDA to‘‘discredited’’the total creep time into several time elements,thereby changing the material properties in each time element;and(2)division of each of the time elements by the time steps,similar to the original DDA.In this manner,one creep problem can be solved via assembling of static problems.Afterwards,the method mentioned above is employed to modeling a tunnel case.The evolution of the displacement fled and stress feld during creep are analyzed and discussed. 展开更多
关键词 CREEP deep underground mining DDA Tunnel squeezing
下载PDF
Guidance and review:Advancing mining technology for enhanced production and supply of strategic minerals in China
4
作者 Yunming Wang Qiusong Chen +1 位作者 Bibo Dai Daolin Wang 《Green and Smart Mining Engineering》 2024年第1期2-11,共10页
Mineral resources,often referred to as“industrial food,”play a pivotal role in the national economic construction sector.Specifically,strategic minerals(SMs)bear a direct influence on the development of emerging str... Mineral resources,often referred to as“industrial food,”play a pivotal role in the national economic construction sector.Specifically,strategic minerals(SMs)bear a direct influence on the development of emerging strategic industries within China.This paper aims to shed light on the supply and demand dynamics,current status,and characteristics of SMs from the perspective of China's national security.We offer a comprehensive review of the current status and challenges associated with SM mining technology in China.Our analysis spans various mining methods,including open-pit mining,deep underground mining,green mining of complex underground bodies,integrated underground mining and processing,and intelligent mining.Within this framework,we delve into multiple initiatives aimed at improving the status of the mining industry,increasing production,and maintaining the adequate supply of these resources.We discuss these strategies from both a top-level policy and system design perspective,as well as detailed implementation plans. 展开更多
关键词 Strategic minerals Mineral security Green mining Intelligent mining Open-pit mining deep underground mining
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部