When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the...When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the curtain barrier.There is no analytical calculation method for the groundwater head distribution induced by dewatering inside excavation.This paper first analyses the mechanism of the blocking effects from a close barrier in confined aquifer.Then,a simple equation based on analytical solution is proposed to calculate groundwater heads inside and outside of the excavation pit with waterproof curtain(hereafter refer to close barrier)in a confined aquifer.The distribution of groundwater head is derived according to two conditions:(i)pumping with a constant water head,and(ii)pumping with a constant flow rate.The proposed calculation equation is verified by both numerical simulation and experimental results.The comparisons demonstrate that the proposed model can be applied in engineering practice of excavation.展开更多
The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic diff...The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.展开更多
An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assume...An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.展开更多
The vertical leakage to confined aquifers is rarely quantified in complex settings, where the recharge zone is characterized by both diffuse and preferential flows. In such setting, conventional hydraulic or tracer ba...The vertical leakage to confined aquifers is rarely quantified in complex settings, where the recharge zone is characterized by both diffuse and preferential flows. In such setting, conventional hydraulic or tracer based estimation of recharge or vertical leakage is problematic, unless the effects of duality of flow regimes are considered. A water balance approach by the use of calibrated groundwater models can be used, as the mass balance is independent of the particular mode of recharge and vertical leakage processes. Here, we adopt a water balance approach to provide a first order assessment of recharge to the unconfined Tertiary limestone aquifer (TLA) and vertical leakage to the Tertiary confined sand aquifer (TCSA) within the Glencoe-Nangwarry-Nagwarry (GNN) recharge zone of the Gambier Basin in South Australia. Despite many studies expressing concern about the impact of land use on recharge to the TLA and vertical leakage to the TCSA, no estimates have been made to quantify the vertical leakage within the GNN recharge zone. In the GNN recharge zone, relatively high recharge to the unconfined aquifer and vertical leakage to the confined aquifer occurs as a result of both diffuse and preferential flow processes. This is due to presence of structural faults and thin or absent aquitard. Within the Hundred of Nangwarry, where 83% of the area is covered with plantation forest, the model calculated recharge to the TLA of 80 mm·year<sup>-1</sup>, about 44% reduction compared to adjacent non-forested area (144 mm·year<sup>-1</sup>). Vertical leakage to the TCSA within the Hundred of Nangwarry area is higher (84.5 mm·year<sup>-1</sup>) than recharge to the TLA. Higher vertical leakage combined with the reduced recharge to TLA resulted in depletion of the TLA storage, as evidenced by drying of the TLA at one locality. In contrast, in plantation forest areas where diffuse recharge is the dominant process (Hundred of Penola), recharge to the TLA is about 19 mm·year<sup>-1</sup>, a 78% reduction compared to the non-forested areas, a mix of irrigation and dryland pasture. In these areas, vertical leakage to the TCSA is much smaller: 8 mm·year<sup>-1</sup> through a thick aquitard. Simulation of a management scenario in which plantation forest is replaced by dryland pasture in the Hundred of Nangwarry results in 135 mm·year<sup>-1</sup> recharge to TLA and a 98 mm·year<sup>-1</sup> vertical leakage to the TCSA.展开更多
This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at ...This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.展开更多
基金“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338)Guangdong Province and the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019)the National Natural Science Foundation of China(NSFC)(Grant No.41807235).
文摘When pumping is conducted in confined aquifer inside excavation pit(waterproof curtain),the direction of the groundwater seepage outside the excavation changes from horizontal to vertical owing to the existence of the curtain barrier.There is no analytical calculation method for the groundwater head distribution induced by dewatering inside excavation.This paper first analyses the mechanism of the blocking effects from a close barrier in confined aquifer.Then,a simple equation based on analytical solution is proposed to calculate groundwater heads inside and outside of the excavation pit with waterproof curtain(hereafter refer to close barrier)in a confined aquifer.The distribution of groundwater head is derived according to two conditions:(i)pumping with a constant water head,and(ii)pumping with a constant flow rate.The proposed calculation equation is verified by both numerical simulation and experimental results.The comparisons demonstrate that the proposed model can be applied in engineering practice of excavation.
基金supported by the National Natural Science Foundation of China
文摘The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.
基金Project(R5110012)supported by Special Foundation for Distinguished Young Scholars of Zhejiang Province,ChinaProject(2009C33117)supported by The General Program of Natural Science Foundation of Zhejiang Province,China
文摘An analytical approach was presented for estimating the factor of safety(FS) for slope failure, with consideration of the impact of a confined aquifer. An upward-moving wetting front from the confined water was assumed and the pore water pressure distribution was then estimated and used to obtain the analytical expression of FS. Then, the validation of the theoretical analysis was applied based on an actual case in Hong Kong. It is shown that the presence of a confined aquifer leads to a lower FS value, and the impact rate of hydrostatic pressure on FS increases as the confined water pressure increases, approaching to a maximum value determined by the ratio of water density to saturated soil density. It is also presented that the contribution of hydrostatic pressure and hydrodynamic pressure to the slope stability vary with the confined aquifer pressure.
文摘The vertical leakage to confined aquifers is rarely quantified in complex settings, where the recharge zone is characterized by both diffuse and preferential flows. In such setting, conventional hydraulic or tracer based estimation of recharge or vertical leakage is problematic, unless the effects of duality of flow regimes are considered. A water balance approach by the use of calibrated groundwater models can be used, as the mass balance is independent of the particular mode of recharge and vertical leakage processes. Here, we adopt a water balance approach to provide a first order assessment of recharge to the unconfined Tertiary limestone aquifer (TLA) and vertical leakage to the Tertiary confined sand aquifer (TCSA) within the Glencoe-Nangwarry-Nagwarry (GNN) recharge zone of the Gambier Basin in South Australia. Despite many studies expressing concern about the impact of land use on recharge to the TLA and vertical leakage to the TCSA, no estimates have been made to quantify the vertical leakage within the GNN recharge zone. In the GNN recharge zone, relatively high recharge to the unconfined aquifer and vertical leakage to the confined aquifer occurs as a result of both diffuse and preferential flow processes. This is due to presence of structural faults and thin or absent aquitard. Within the Hundred of Nangwarry, where 83% of the area is covered with plantation forest, the model calculated recharge to the TLA of 80 mm·year<sup>-1</sup>, about 44% reduction compared to adjacent non-forested area (144 mm·year<sup>-1</sup>). Vertical leakage to the TCSA within the Hundred of Nangwarry area is higher (84.5 mm·year<sup>-1</sup>) than recharge to the TLA. Higher vertical leakage combined with the reduced recharge to TLA resulted in depletion of the TLA storage, as evidenced by drying of the TLA at one locality. In contrast, in plantation forest areas where diffuse recharge is the dominant process (Hundred of Penola), recharge to the TLA is about 19 mm·year<sup>-1</sup>, a 78% reduction compared to the non-forested areas, a mix of irrigation and dryland pasture. In these areas, vertical leakage to the TCSA is much smaller: 8 mm·year<sup>-1</sup> through a thick aquitard. Simulation of a management scenario in which plantation forest is replaced by dryland pasture in the Hundred of Nangwarry results in 135 mm·year<sup>-1</sup> recharge to TLA and a 98 mm·year<sup>-1</sup> vertical leakage to the TCSA.
基金supported by National Natural Science Foundation of China(Grant No.40930637)Special Project for Earthquake Science(Grant No.200808079)Subject Foundation of Ministry of Education for Doctor Candidates in Universities(Grant No.20100022110001)
文摘This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.