Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st...Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.展开更多
With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different ...With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation.展开更多
The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ...The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ores is a constant clinical task for industry metallurgists.Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated.This condition can be avoided by direct reduction followed by magnetic separation(to separate the high amount of gangue or refractory and metal parts)and smelting.Chromite overburden(COB)is a mine waste generated in chromite ore processing,and it mainly consists of iron,chromium,and nickel(<1wt%).In the present work,the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore(COB)were thoroughly investigated via thermal analysis.The results showed that the reduction of pellets followed a firstorder autocatalytic reaction control mechanism in the temperature range of 900-1100℃.The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB.The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.展开更多
In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of th...In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the signifcant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identifed as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine.展开更多
This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of com...This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.展开更多
The Cenozoic-age Makum coal from northeastern India offers numerous research opportunities because of its diverse geochemical and geological characteristics.Due to its high sulfur content,the coal has been found to be...The Cenozoic-age Makum coal from northeastern India offers numerous research opportunities because of its diverse geochemical and geological characteristics.Due to its high sulfur content,the coal has been found to be less useful for industrial purposes.It can,however,serve as a hub for ongoing research on coal-based derivative products.The aim of this research work is to investigate the mineralogical and geochemical compositions of the coal,mine overburden(MOB)and shale samples taken from the Makum coal field and also on establishing a mutual relationship between them.To characterize the geochemical controlling factors of the Makum coal field,the study employs coal petrography,FTIR,mineralogical,and geochemical analysis.According to X-ray diffraction analysis,the major minerals like quartz,kaolinite,haematite,illite,pyrite,and calcite are present in coal and MOB.Pyrite is observed by SEM-EDS analysis as cubic-shaped particles that are smaller than a fewμm in size.The presence of sulfide minerals represents a phase of pyrite mineralization.The petrography study was used to better understand the environment that existed during the formation of the plant material,which aids us in determining the quantity of detrital mineral sediment contained in the coal.According to the ICP-MS analysis,the samples indicate significant levels of rare earth elements including yttrium.The present study reveals higher concentrations of poten-tial hazardous elements in the coal samples,with V,Cr,Ni,Cu,and Zn content in coal being considerably enriched compared to world-average concentrations.The correlation analysis reveals that the potential hazardous elements like Co,Ni,As,and Cu are associated with pyrite as they have strong affinity towards pyrite.Thus,numerous minerals and rare earth elements(REEs)exist,opening up a fresh avenue for more research in the area.This study also assists researchers in understanding the significance of Makum coal and provides numerous ideas for coal characterization.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52225402 and U1910206).
文摘Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.
基金support from National Major Scientific Instruments Development Project of China(Grant No.5202780029)Program of Distinguished Young Scholars,Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyjjq0087)Research on resilience prevention,control and adaptation strategy of flood disaster in megacities under changing environment(Grant No.2021-ZD-CQ-2).
文摘With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation.
文摘The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life.However,the use of low-grade iron ores is a constant clinical task for industry metallurgists.Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated.This condition can be avoided by direct reduction followed by magnetic separation(to separate the high amount of gangue or refractory and metal parts)and smelting.Chromite overburden(COB)is a mine waste generated in chromite ore processing,and it mainly consists of iron,chromium,and nickel(<1wt%).In the present work,the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore(COB)were thoroughly investigated via thermal analysis.The results showed that the reduction of pellets followed a firstorder autocatalytic reaction control mechanism in the temperature range of 900-1100℃.The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB.The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.
基金supported by the State Key Research Development Program of China(2022YFC3004602)Independent Research fund of Joint NationalLocal Engineering Research Centre for Safe and Precise Coal Mining(Anhui University of Science and Technology)(EC2022001)+2 种基金the National Natural Science Foundation of China(41872205)Beijing Natural Science Foundation(8202041)the Fundamental Research Funds for the Central Universities(2022YJSLJ08,2022JCCXNY03).
文摘In order to comprehend the dynamic disaster mechanism induced by overburden rock caving during the advancement of a coal mining face, a physical simulation model is constructed basing on the geological condition of the 21221 mining face at Qianqiu coal mine in Henan Province, China. This study established, a comprehensive monitoring system to investigate the interrelations and evolutionary characteristics among multiple mechanical parameters, including mining-induced stress, displacement, temperature, and acoustic emission events during overburden rock caving. It is suggested that, despite the uniformity of the overburden rock caving interval, the main characteristic of overburden rock lies in its uneven caving strength. The mining-induced stress exhibits a reasonable interrelation with the displacement, temperature, and acoustic emission events of the rock strata. With the advancement of the coal seam, the mining-induced stress undergoes four successive stages: gentle stability, gradual accumulation, high-level mutation, and a return to stability. The variations in other mechanical parameters does not synchronize with the signifcant changes in mining-induced stress. Before the collapse of overburden rock occurs, rock strata temperature increment decreases and the acoustic emission ringing counts surges with the increase of rock strata displacement and mining-induced stress. Therefore, the collaborative characteristics of mining-induced stress, displacement, temperature, and acoustic emission ringing counts can be identifed as the precursor information or overburden rock caving. These results are in good consistent with on-site situation in the coal mine.
基金This work was supported by China Postdoctoral Science Foundation(No.2022M723391)the Science and Technology Innovation Project of Higher Education in Shanxi Province(No.2019L0754)+1 种基金the Central Guiding Local Science and Technology Development Fund Project(No.YDZJSX2021B021)Shanxi Province Basic Research Plan General Project(No.202203021221294).
文摘This study used the stable and convergent Dufort-Frankel method to differentially discretize the diffusion equation of the ground-well transient electromagnetic secondary field.The absorption boundary condition of complex frequency-shifted perfectly matched layer(CFS-PML)was used for truncation so that the low-frequency electromagnetic wave can be better absorbed at the model boundary.A typical three-dimensional(3D)homogeneous half-space model was established and a low-resistivity cube model was analyzed under the half-space condition.The response patterns and drivers of the low-resistivity cube model were discussed under the influence of a low-resistivity overburden.The absorption boundary conditions of CFS-PML significantly affected the low-frequency electromagnetic waves.For a low-resistivity cube around the borehole,its response curve exhibited a single-peak,and the extreme point of the curve corresponded to the center of the low-resistivity body.When the low-resistivity cube was directly below the borehole,the response curve showed three extreme values(two high and one low),with the low corresponding to the center of the low-resistivity body.The total field response of the low-resistivity overburden was stronger than that of the uniform half-space model due to the low-resistivity shielding effect of electromagnetic waves.When the receiving-transmitting distance gradually increased,the effect of the low-resistivity overburden was gradually weakened,and the response of the low-resistivity cube was strengthened.It was affected by the ratio of the overburden resistivity to the resistivity of the low-resistivity body.
基金MoES (Govt of India)for his financial assistance to our project (GPP364).
文摘The Cenozoic-age Makum coal from northeastern India offers numerous research opportunities because of its diverse geochemical and geological characteristics.Due to its high sulfur content,the coal has been found to be less useful for industrial purposes.It can,however,serve as a hub for ongoing research on coal-based derivative products.The aim of this research work is to investigate the mineralogical and geochemical compositions of the coal,mine overburden(MOB)and shale samples taken from the Makum coal field and also on establishing a mutual relationship between them.To characterize the geochemical controlling factors of the Makum coal field,the study employs coal petrography,FTIR,mineralogical,and geochemical analysis.According to X-ray diffraction analysis,the major minerals like quartz,kaolinite,haematite,illite,pyrite,and calcite are present in coal and MOB.Pyrite is observed by SEM-EDS analysis as cubic-shaped particles that are smaller than a fewμm in size.The presence of sulfide minerals represents a phase of pyrite mineralization.The petrography study was used to better understand the environment that existed during the formation of the plant material,which aids us in determining the quantity of detrital mineral sediment contained in the coal.According to the ICP-MS analysis,the samples indicate significant levels of rare earth elements including yttrium.The present study reveals higher concentrations of poten-tial hazardous elements in the coal samples,with V,Cr,Ni,Cu,and Zn content in coal being considerably enriched compared to world-average concentrations.The correlation analysis reveals that the potential hazardous elements like Co,Ni,As,and Cu are associated with pyrite as they have strong affinity towards pyrite.Thus,numerous minerals and rare earth elements(REEs)exist,opening up a fresh avenue for more research in the area.This study also assists researchers in understanding the significance of Makum coal and provides numerous ideas for coal characterization.