Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water d...Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water deposits have been recognized in the continuous core rocks from the SKII, including mudstone of still water, marlite, dolostone, off shale, volcanic ashes, turbidite, slump sediment, tempestite, seismite, ostracoda limestone and sparry carbonate, which are divided into two types: microfacies generated due to gradually changing environments (Ⅰ) and microfacies generated due to geological events (Ⅱ). Type Ⅰ is composed of some special fine grain sediments such as marlite, dolomite stone and oil shale as well as mudstone and Type Ⅱ is composed of some sediments related to geological events, such as volcanic ashes, turbiditie, slump sediment, tempestite, seismite, ostracoda limestone. The formation of sparry carbonate may be controlled by factors related to both environments and events. Generally, mudstone sediments of still water can be regarded as background sediments, and the rest sediments are all event sediments, which have unique forming models, which may reflect controlling effects of climatics and tectonics.展开更多
The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, a...Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.展开更多
The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport ...The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.展开更多
Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is s...Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.展开更多
Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration a...Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.展开更多
The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the...The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas.Based on a typical sinuous Quaternary channel(Channel I)in the Taranaki Basin,New Zealand,a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I,and the relationships between the quantitative parameters and the morphological changes of the Channel I,as well as the controlling factors affecting those morphological changes,were discussed.The results are as follows:(1)in the quantitative analysis,six parameters were selected:the channel depth,width,sinuosity,and aspect ratio(width/depth),the channel swing amplitude(λ)and the channel bend frequency(ω);(2)according to the quantitative morphological parameters of the channel(mainly including three parameters such as channel sinuosity,ωandλ),the Channel I was divided into three types:the low-sinuous channel(LSC),the high-sinuous channel(HSC),the moderate-sinuous channel(MSC).U-shaped channel cross-sections developed in the LSC,V-shaped channel cross-sections developed in the HSC,including inclined-V and symmetric-V cross-sections,and dish-shaped channel cross-sections developed in the MSC;(3)the morphological characteristics of the LSC and MSC were related to their widths and depths,while the morphology of the HSC was greatly affected by the channel width,a change in depth did not affect the HSC morphology;(4)the morphological changes of the Channel I were controlled mainly by the slope gradient,the restricted capacity of the channel and the differential in fluid properties.展开更多
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double...This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.展开更多
Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality...Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.展开更多
In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N ...In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.展开更多
Tumor deposits(TDs)are defined as discrete,irregular clusters of tumor cells lying in the soft tissue adjacent to but separate from the primary tumor,and are usually found in the lymphatic drainage area of the primary...Tumor deposits(TDs)are defined as discrete,irregular clusters of tumor cells lying in the soft tissue adjacent to but separate from the primary tumor,and are usually found in the lymphatic drainage area of the primary tumor.By definition,no residual lymph node structure should be identified in these tumor masses.At present,TDs are mainly reported in colorectal cancer,with a few reports in gastric cancer.There are very few reports on breast cancer(BC).For TDs,current dominant theories suggest that these are the result of lymph node metastasis of the tumor with complete destruction of the lymph nodes by the tumor tissue.Even some pathologists classify a TD as two lymph node metastases for calculation.Some pathologists also believe that TDs belong to the category of disseminated metastasis.Therefore,regardless of the origin,TDs are an indicator of poor prognosis.Moreover,for BC,sentinel lymph node biopsy is generally used at present.Whether radical axillary lymph node dissection should be adopted for BC with TDs in axillary lymph nodes is still inconclusive.The present commentary of this clinical issue has certain guiding significance.It is aimed to increase the awareness of the scientific community towards this under-recognized problem in BC pathology.展开更多
The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, g...The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.展开更多
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant...The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.展开更多
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ...It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.展开更多
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the ...The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.展开更多
The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated wi...The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.展开更多
文摘Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water deposits have been recognized in the continuous core rocks from the SKII, including mudstone of still water, marlite, dolostone, off shale, volcanic ashes, turbidite, slump sediment, tempestite, seismite, ostracoda limestone and sparry carbonate, which are divided into two types: microfacies generated due to gradually changing environments (Ⅰ) and microfacies generated due to geological events (Ⅱ). Type Ⅰ is composed of some special fine grain sediments such as marlite, dolomite stone and oil shale as well as mudstone and Type Ⅱ is composed of some sediments related to geological events, such as volcanic ashes, turbiditie, slump sediment, tempestite, seismite, ostracoda limestone. The formation of sparry carbonate may be controlled by factors related to both environments and events. Generally, mudstone sediments of still water can be regarded as background sediments, and the rest sediments are all event sediments, which have unique forming models, which may reflect controlling effects of climatics and tectonics.
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05006-003)the Fundamental Research Funds for the Central Universities (Grant No.14CX06070A)
文摘Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.
基金Supported by the National Natural Science Foundation of China(41802127,U1762217)China National Science and Technology Major Project(2016ZX05006-003)。
文摘The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.
基金supported by the National Science and Technology Major Project of China(2016ZX05033)the Project of SINOPEC Science and Technology Department(P19021-2)the Basic Prospective Research Project of SINOPEC(P22214-2).
文摘Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.
基金The National Natural Science Foundation of China under contract Nos 42077410 and 41872112。
文摘Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.
基金The National Natural Science Foundation of China under contract Nos 42077410,41872112 and 42002031the Key Scientific Research Projects in University of Henan Province under contract No.18A170007.
文摘The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas.Based on a typical sinuous Quaternary channel(Channel I)in the Taranaki Basin,New Zealand,a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I,and the relationships between the quantitative parameters and the morphological changes of the Channel I,as well as the controlling factors affecting those morphological changes,were discussed.The results are as follows:(1)in the quantitative analysis,six parameters were selected:the channel depth,width,sinuosity,and aspect ratio(width/depth),the channel swing amplitude(λ)and the channel bend frequency(ω);(2)according to the quantitative morphological parameters of the channel(mainly including three parameters such as channel sinuosity,ωandλ),the Channel I was divided into three types:the low-sinuous channel(LSC),the high-sinuous channel(HSC),the moderate-sinuous channel(MSC).U-shaped channel cross-sections developed in the LSC,V-shaped channel cross-sections developed in the HSC,including inclined-V and symmetric-V cross-sections,and dish-shaped channel cross-sections developed in the MSC;(3)the morphological characteristics of the LSC and MSC were related to their widths and depths,while the morphology of the HSC was greatly affected by the channel width,a change in depth did not affect the HSC morphology;(4)the morphological changes of the Channel I were controlled mainly by the slope gradient,the restricted capacity of the channel and the differential in fluid properties.
基金funded by the China Postdoctoral Science Foundation(Grant No.2022M721614)the opening project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(Grant No.KFJJ23-07M)。
文摘This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner.
基金supported by the National Natural Science Foundation of China(51975112,52375412)Fundamental Research Funds for Central Universities(N2203011)。
文摘Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.
基金supported by the Biological Breeding-National Science and Technology Major Project (2023ZD04072)the Innovation Program of Chinese Academy of Agricultural Sciencesthe Hainan Yazhou Bay Seed Lab (B23YQ1507)。
文摘In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.
文摘Tumor deposits(TDs)are defined as discrete,irregular clusters of tumor cells lying in the soft tissue adjacent to but separate from the primary tumor,and are usually found in the lymphatic drainage area of the primary tumor.By definition,no residual lymph node structure should be identified in these tumor masses.At present,TDs are mainly reported in colorectal cancer,with a few reports in gastric cancer.There are very few reports on breast cancer(BC).For TDs,current dominant theories suggest that these are the result of lymph node metastasis of the tumor with complete destruction of the lymph nodes by the tumor tissue.Even some pathologists classify a TD as two lymph node metastases for calculation.Some pathologists also believe that TDs belong to the category of disseminated metastasis.Therefore,regardless of the origin,TDs are an indicator of poor prognosis.Moreover,for BC,sentinel lymph node biopsy is generally used at present.Whether radical axillary lymph node dissection should be adopted for BC with TDs in axillary lymph nodes is still inconclusive.The present commentary of this clinical issue has certain guiding significance.It is aimed to increase the awareness of the scientific community towards this under-recognized problem in BC pathology.
基金Supported by the CNPC Basic and Prospective Key Scientific and Technological Project (2021DJ24)。
文摘The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金supported by the National Key Research and Development Program(Grant nos.2022YFC2807203,2022YFB2302701).
文摘The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.
基金supported by the National Key Research and Development Program of China(2019YFA0205700)Scientific Research Projects of Colleges and Universities in Hebei Province(JZX2023004)+2 种基金Research Program of Local Science and Technology Development under the Guidance of Central(216Z4402G)support from Ministry of Science and Higher Education of Russian Federation(project FFSG-2022-0001(122111700046-3),"Laboratory of perspective electrode materials for chemical power sources")support from"Yuanguang"Scholar Program of Hebei University of Technology
文摘It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金jointly supported by the foundation from Department of Science and Technology of Jiangxi Province(No.20232BAB213064)National Natural Science Foundation of China(No.42102088)foundation from the State Key Laboratory of Nuclear Resources and Environment(2022NRE33)。
文摘The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.
基金supported by the National Natural Science Foundation of China(Nos.42172093,42202075,and 42302108)the Key Research and Development Project of Xinjiang(No.2023B03015)+1 种基金the Uygur Autonomous Region Tianchi Talent Project,and the Natural Science Foundation of Xinjiang(No.2022D01A344)China Scholarship Council(202304180004)。
文摘The Hatu gold deposit is the largest historical gold producer of the West Junggar,western China,with an Au reserve of about 62 t.The orebodies were controlled by NE-,EW-,and NW-trending subsidiary faults associated with the Anqi fault.This deposit exhibits characteristics typical of a fault-controlled lode system,and the orebodies consist of auriferous quartz veins and altered wall rocks within Early Carboniferous volcano-sedimentary rocks.Three stages of mineralization have been identified in the Hatu gold deposit:the early pyrite-albite-quartz stage,the middle polymetallic sulfides-ankerite-quartz stage,and late quartz-calcite stage.The sulfur isotopic values of pyrite and arsenopyrite vary in a narrow range from-0.8‰to1.3‰and an average of 0.4‰,the near-zeroδ~(34)S values implicate the thorough homogenization of the sulfur isotopes during the metamorphic dehydration of the Early Carboniferous volcano-sedimentary rocks.Lead isotopic results of pyrite and arsenopyrite(^(206)Pb/^(204)Pb=17.889-18.447,^(207)Pb/^(204)Pb=15.492-15.571,^(208)Pb/^(204)Pb=37.802-38.113)are clustered between orogenic and mantle/upper crust lines,indicating that the lead was mainly sourced from the hostrocks within the Early Carboniferous Tailegula Formation.The characteristics of S and Pb isotopes suggest that the ore-forming metals of the Hatu orogenic gold deposit are of metamorphogenic origin,associated with the continental collision between the Yili-Kazakhstan and Siberian plates during the Late Carboniferous.