The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elementa...The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elemental data concerning the recently uncovered Zongzhuo Formation sedimentary mélanges within the Dingri area.Field observations reveal the predominant composition of the Zongzhuo Formation,characterized by a matrix of sandstone-mudstone mixed with sand-conglomerates within native blocks exhibiting soft sediment deformation.Moreover,exotic blocks originating from littoral-neritic seas display evidence of landslide deformation.Our study identifies the depositional environment of the Zongzhuo Formation in Dingri as a slope turbidite fan,with its provenance traced back to the passive continental margin.Notably,this contrasts with the Zongzhuo Formation found in the Jiangzi-Langkazi area.Based on existing data,we conclude that the Zongzhuo Formation in the Dingri area was influenced by the Dingri-Gamba fault and emerged within a fault basin of the passive continental margin due to Neo-Tethys oceanic subduction during the Late Cretaceous period.Its provenance can be attributed to the littoral-neritic sea of the northern Tethys Himalaya region.This study holds significant implications for understanding the tectonic evolution of Tethys Himalaya and for reevaluating the activity of the Dingri-Gamba fault,as it controls the active deposition of the Zongzhuo Formation.展开更多
The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang F...The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.展开更多
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration a...Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.展开更多
Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary...Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary architectures of intra-platform shoal, investigated the vertical and horizontal development and distribution of intra-platform shoal in each sequence, and thus established the sedimentary evolution model of shoal body. The study results are reflected in four aspects.First, there are two complete third-order sequences(SQ1 and SQ2) in Changxing Formation in central Sichuan Basin. SQ1 is generally thick in the north and thin in the south, and SQ2 shows a thickness differentiation trend of “two thicknesses and three thinnesses”. Second, the Changxing Formation in central Sichuan Basin mainly develops intra-platform shoal, inter-shoal sea and intra-platform depression subfacies. In the vertical direction, the intra-platform shoal mainly presents two typical sedimentary sequences: stable superposed and high-frequency interbedded. Third, the stable superimposed sedimentary sequence is developed in the shoal belt at the edge of intra-platform depression, which is composed of two shoal-forming periods and located in the highstand systems tracts(HSTs) of SQ1 and SQ2. The high-frequency interbedded sedimentary sequence is developed in the southern shoal belt of intra-platform depression, which is composed of four shoal-forming periods and mainly located in the HST of SQ2. Fourth, during the SQ1 deposition, the intra-platform shoal was mainly developed at the edge of the intra-platform depression on the north side of the study area, and the inter-shoal sea subfacies was mainly developed on the south side. During the SQ2 deposition, the intra-platform shoal was widely developed in the area, forming two nearly parallel intra-platform shoal belts. The study results provide direction and ideas for exploration of Changxing Formation intra-platform shoal reservoirs in central Sichuan Basin.展开更多
Granular calcite is an authigenic mineral in fine-grained sedimentary rocks.Core observation,thin section observation,cathodoluminescence analysis,fluid inclusion analysis,scanning electron microscope(SEM),and isotopi...Granular calcite is an authigenic mineral in fine-grained sedimentary rocks.Core observation,thin section observation,cathodoluminescence analysis,fluid inclusion analysis,scanning electron microscope(SEM),and isotopic composition analysis were combined to clarify the genesis of granular calcite in the lacustrine fine-grained sedimentary rocks of the Permian Lucaogou Formation in the Jimusar Sag,Junggar Basin.It is found that the granular calcite is distributed with laminated characteristics in fine-grained sedimentary rocks in tuffite zones(or the transitional zone between tuffite and micritic dolomite).Granular calcite has obvious cathodoluminesence band,and it can be divided into three stages.Stage-Ⅰ calcite,with non-luminesence,high content of Sr element,inclusions containing Cos,and homogenization temperature higher than 170℃,was directly formed from the volcanic-hydrothermal deposition.Stage-Ⅱ calcite,with bright yellow luminescence,high contents of Fe,Mn and Mg,enrichment of light rare earth elements(LREEs),and high homogenization temperature,was formed by recrystallization of calcareous edges from exhalative hydrothermal deposition.Stage-IlI calcite,with dark orange luminescence band,high contents of Mg,P,V and other elements,no obvious fractionation among LREEs,and low homogenization temperature,was originated from diagenetic transformation during burial.The granular calcite appears regularly in the vertical direction and its formation temperature decreases from the center to the margin of particles,providing direct evidences for volcanic-hydrothermal events during the deposition of the Lucaogou Formation.The volcanic-hydrothermal event was conducive to the enrichment of organic matters in fine-grained sedimentary rocks of the Lucaogrou Formation,and positive to the development of high-quality source rocks.The volcanic-hydrothermal sediments might generate intergranular pores/fractures during the evolution,creating conditions for the self-generation and self-storage of shale oil.展开更多
The late Paleozoic evolution of the Wulijishanhen(WSH)-Shangdan(SD) area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biologic...The late Paleozoic evolution of the Wulijishanhen(WSH)-Shangdan(SD) area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp.in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferouseearly Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobie Tianshan rift of southern Mongolia.展开更多
The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and thei...The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.展开更多
Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term ...Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.展开更多
An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and suba...An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.展开更多
The study area is located in the south of Huanxian county,in Yan'an and Puxian counties and to the north of Xi'an.The Shanxi and lower Shihezi formations are important gas-bearing formations.Given our analysis...The study area is located in the south of Huanxian county,in Yan'an and Puxian counties and to the north of Xi'an.The Shanxi and lower Shihezi formations are important gas-bearing formations.Given our analysis of the direction of rivers,the contents of stable heavy minerals and of feldspar of palaeo river systems,the study area is divided into six palaeodrainage patterns corresponding to six feldspar regions and six sedimentary facies regions.On this basis,the distribution of sedimentary facies was also analyzed.During the Shanxi stage,a delta front was deposited in the Huanxian region and delta plains and fronts were deposited in the Pingliang,Chunhua-Yaoxian and Hancheng-Chengcheng regions.In the Yan'an-Daning region,only a delta front was developed.The distribution of sedimentary facies in the earlier Shihezi stage originated from the Shanxi stage.A delta front was developed in the Huanxian region while a delta plain and front developed in the Pingliang-Zhenyuan region during the same time.Lakes originated only in the Zhenyuan-Huanxian-Huachi-Zhengning and Daning-Jixian zones.This analytical method shows that different palaeodrainage patterns can be effectively distinguished in order to forecast sedimentary facies.展开更多
Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine dep...Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine deposits. The Mangang Fm. composed of well-rounded quartz sandstones, were commonly considered as the bottom part of the Mengyejing salt series. Dttring last decades,展开更多
Reconstructed synsedimentary paleogeomorpholgy is an effective method in predicting the distribution of sandbodies and can provide valid evidence in the search for reservoirs. Based on a synsedimentary paleogeomorphol...Reconstructed synsedimentary paleogeomorpholgy is an effective method in predicting the distribution of sandbodies and can provide valid evidence in the search for reservoirs. Based on a synsedimentary paleogeomorpholgy reconstruction of the third member of the Dongying formation (Ed3) in the Qikou sag,the basic paleogeomorphic characteristics of Ed3 are described and the spatial distributions of denudation and subsidence areas are discussed. Key boundary faults controlling the deposition of important sediment bodies are proposed and the interrelations among faulted slope-break belts or flexure belts,intra-depression uplifts and sags,sediment sources and sediments input points have been investigated.展开更多
Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are c...Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.展开更多
Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the fi...Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.展开更多
Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oi...Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.展开更多
Accurately identifying and quantitatively describing abandoned channels in meandering rivers are of great significance for improving hydrocarbon recovery. By using modern deposition analogy, field outcrop analysis, a ...Accurately identifying and quantitatively describing abandoned channels in meandering rivers are of great significance for improving hydrocarbon recovery. By using modern deposition analogy, field outcrop analysis, a dense well spacing, core observations and a review of the literature, this paper studied the formation process and space–time amalgamation of abandoned channels in meandering river. The results reveal that formation mechanisms of abandoned channels include chute cutoff patterns(shoal-cutting, ditch-scouring and embayment-eroding patterns) and neck cutoff patterns. The chute cutoff pattern forms a gradually abandoned channel, while the neck cutoff pattern forms a suddenly abandoned channel. From upstream to downstream, the sedimentary pattern of the abandoned channel transforms from a chute cutoff pattern to a neck cutoff pattern, where the main controlling factors transition from the grain size and gradient to the flow and vegetation. An abandoned channel formed by a chute cutoff pattern consists mainly of siltstone, fine sandstone and thin gravel layers, which form a lithological-physical barrier. The abandoned channel formed by a neck cutoff pattern consists mainly of mudstone and argillaceous siltstone, forming a lithological barrier. Based on the amalgamation and structure of the reservoir architectural elements, the abandoned channel can be divided into three planar sedimentary patterns(crescent, semilune and horseshoe) for a single channel and five vertical sedimentary patterns for composite channels.展开更多
The Sifangtai and Mingshui formations were continuously cored in the SK-1 n borehole(China Cretaceous Continental Scientific Drilling-SongKe1-the north borehole).The core is 767.96 m long,and the recovery is 94.7%.T...The Sifangtai and Mingshui formations were continuously cored in the SK-1 n borehole(China Cretaceous Continental Scientific Drilling-SongKe1-the north borehole).The core is 767.96 m long,and the recovery is 94.7%.The ages of the formations range from middle Campanian to Danian.The sequence and process of lithology-lithofacies and cyclic stratigraphy were described in detail.Eight litho-types compose the Sifangtai Formation,and 15 litho-types compose the Mingshui Formation.Deposition was predominantly in meandering river and lacustrine environments,including 10 microfacies in the Sifangtai Formation and 15 microfacies in the Mingshui Formation.The complete sequence is composed of 535 m-scale cycles(sixth-order cycle),152 fifth-order cycles,42 fourth-order cycles and five third-order cycles.The centimeter-scale description of the section revealed some previously unknown horizons such as a special type of mudstone,marl,volcanic ash and favorable sand reservoirs in the formations.The new-found evidence is very important for the interpretation of the evolution of the basin,conditions such as lake oxic events,the K/Pg boundary,tectonism in the late sag basin stage,and the reservoir-cap rock assemblages in the shallow stratigraphy.展开更多
The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the...The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the sequence stratigraphy and sedimentary facies of the Kaijiang-Liangping area are studied. Four sequence boundaries and three maximum flooding surfaces of the Feixianguan formation are detected in this area. Three third-order sequences are identified as first sequence (SQ1), the second sequence (SQ2), and the third sequence (SQ3) in which SQ1 corresponds to the member 1 of the Feixianguan formation, SQ2 corresponds to the member 2, and SQ3 corresponds to the member 3 and member 4. Member 1, 2, 3 and 4 are lithologic sections divided by predecessors. On the basis of this sequence division and their sedimentary marks, the facies of the Feixianguan formation can be divided into open platform and evaporate platform categories. The open platform is composed of three subfacies identified as platform bank or basin marginal bank, interbank, and platform basin. Thus, a sedimentary evolution model is established. According to the sedimentary and seismic characteristics of the Kaijiang-Liangping area, we determine that two oolitic bank models, the aggradation model and the progradation model, are developed in this area. The aggradation model is developed in the Longgang region, which includes the basin marginal bank as a favorable exploring zone. The progradation model is developed in the Jiulongshan and Longhui areas, besides the basin marginal bank, the favorable exploration zones also include the oolitic bank developing areas of the inner basin.展开更多
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
基金supported by the Geological Survey Project of the China Geological Survey(Grant No.DD20211547)the Basic Survey Project of the Command Center of Natural Resources Comprehensive Survey(Grant No.ZD20220508)。
文摘The study of sedimentary mélanges holds pivotal importance in understanding orogenic processes and unveiling geodynamic mechanisms.In this study,we present findings on zircon U-Pb isotopes and whole-rock elemental data concerning the recently uncovered Zongzhuo Formation sedimentary mélanges within the Dingri area.Field observations reveal the predominant composition of the Zongzhuo Formation,characterized by a matrix of sandstone-mudstone mixed with sand-conglomerates within native blocks exhibiting soft sediment deformation.Moreover,exotic blocks originating from littoral-neritic seas display evidence of landslide deformation.Our study identifies the depositional environment of the Zongzhuo Formation in Dingri as a slope turbidite fan,with its provenance traced back to the passive continental margin.Notably,this contrasts with the Zongzhuo Formation found in the Jiangzi-Langkazi area.Based on existing data,we conclude that the Zongzhuo Formation in the Dingri area was influenced by the Dingri-Gamba fault and emerged within a fault basin of the passive continental margin due to Neo-Tethys oceanic subduction during the Late Cretaceous period.Its provenance can be attributed to the littoral-neritic sea of the northern Tethys Himalaya region.This study holds significant implications for understanding the tectonic evolution of Tethys Himalaya and for reevaluating the activity of the Dingri-Gamba fault,as it controls the active deposition of the Zongzhuo Formation.
文摘The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.
基金The National Natural Science Foundation of China under contract Nos 42077410 and 41872112。
文摘Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.
基金Supported by the PetroChina-Southwest Petroleum University Innovation Consortium Technology Cooperation Project (2020CX010000)。
文摘Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary architectures of intra-platform shoal, investigated the vertical and horizontal development and distribution of intra-platform shoal in each sequence, and thus established the sedimentary evolution model of shoal body. The study results are reflected in four aspects.First, there are two complete third-order sequences(SQ1 and SQ2) in Changxing Formation in central Sichuan Basin. SQ1 is generally thick in the north and thin in the south, and SQ2 shows a thickness differentiation trend of “two thicknesses and three thinnesses”. Second, the Changxing Formation in central Sichuan Basin mainly develops intra-platform shoal, inter-shoal sea and intra-platform depression subfacies. In the vertical direction, the intra-platform shoal mainly presents two typical sedimentary sequences: stable superposed and high-frequency interbedded. Third, the stable superimposed sedimentary sequence is developed in the shoal belt at the edge of intra-platform depression, which is composed of two shoal-forming periods and located in the highstand systems tracts(HSTs) of SQ1 and SQ2. The high-frequency interbedded sedimentary sequence is developed in the southern shoal belt of intra-platform depression, which is composed of four shoal-forming periods and mainly located in the HST of SQ2. Fourth, during the SQ1 deposition, the intra-platform shoal was mainly developed at the edge of the intra-platform depression on the north side of the study area, and the inter-shoal sea subfacies was mainly developed on the south side. During the SQ2 deposition, the intra-platform shoal was widely developed in the area, forming two nearly parallel intra-platform shoal belts. The study results provide direction and ideas for exploration of Changxing Formation intra-platform shoal reservoirs in central Sichuan Basin.
基金Supported by the National Natural Science Foundation Project of China(42072161)College Basic Research Funding Project(22CX07008A).
文摘Granular calcite is an authigenic mineral in fine-grained sedimentary rocks.Core observation,thin section observation,cathodoluminescence analysis,fluid inclusion analysis,scanning electron microscope(SEM),and isotopic composition analysis were combined to clarify the genesis of granular calcite in the lacustrine fine-grained sedimentary rocks of the Permian Lucaogou Formation in the Jimusar Sag,Junggar Basin.It is found that the granular calcite is distributed with laminated characteristics in fine-grained sedimentary rocks in tuffite zones(or the transitional zone between tuffite and micritic dolomite).Granular calcite has obvious cathodoluminesence band,and it can be divided into three stages.Stage-Ⅰ calcite,with non-luminesence,high content of Sr element,inclusions containing Cos,and homogenization temperature higher than 170℃,was directly formed from the volcanic-hydrothermal deposition.Stage-Ⅱ calcite,with bright yellow luminescence,high contents of Fe,Mn and Mg,enrichment of light rare earth elements(LREEs),and high homogenization temperature,was formed by recrystallization of calcareous edges from exhalative hydrothermal deposition.Stage-IlI calcite,with dark orange luminescence band,high contents of Mg,P,V and other elements,no obvious fractionation among LREEs,and low homogenization temperature,was originated from diagenetic transformation during burial.The granular calcite appears regularly in the vertical direction and its formation temperature decreases from the center to the margin of particles,providing direct evidences for volcanic-hydrothermal events during the deposition of the Lucaogou Formation.The volcanic-hydrothermal event was conducive to the enrichment of organic matters in fine-grained sedimentary rocks of the Lucaogrou Formation,and positive to the development of high-quality source rocks.The volcanic-hydrothermal sediments might generate intergranular pores/fractures during the evolution,creating conditions for the self-generation and self-storage of shale oil.
基金financially supported by the China Geological Survey (Grant No. [2010] 01-09-11)
文摘The late Paleozoic evolution of the Wulijishanhen(WSH)-Shangdan(SD) area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp.in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferouseearly Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobie Tianshan rift of southern Mongolia.
基金National Basic Research Program of China, No.2004CB720206 National Natural Science Foundation of China, No.40772118+1 种基金 No.49971009 The RGC Grant of the HKSAR, No.HKU 7243/04H The authors appreciate Zhang Huanxin and Song Weijia, Sun Zhong and Wang Yuanping for their analyses of grain size, chemical elements and Surface texture characteristics of quartz sands. Gratitude is owed to Xiao Zhaodi and Zheng Jiefang for their valuable advice on translation.
文摘The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.
基金Project(41802147)supported by the National Natural Science Foundation of ChinaProject(2016ZX05007-004)supported by the National Major Science and Technology Projects of China。
文摘Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.
文摘An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.
基金Projects OF06142 supported by the National Basic Research Program of China2001CB209100 by the Science Foundation of China University of Mining and Technology
文摘The study area is located in the south of Huanxian county,in Yan'an and Puxian counties and to the north of Xi'an.The Shanxi and lower Shihezi formations are important gas-bearing formations.Given our analysis of the direction of rivers,the contents of stable heavy minerals and of feldspar of palaeo river systems,the study area is divided into six palaeodrainage patterns corresponding to six feldspar regions and six sedimentary facies regions.On this basis,the distribution of sedimentary facies was also analyzed.During the Shanxi stage,a delta front was deposited in the Huanxian region and delta plains and fronts were deposited in the Pingliang,Chunhua-Yaoxian and Hancheng-Chengcheng regions.In the Yan'an-Daning region,only a delta front was developed.The distribution of sedimentary facies in the earlier Shihezi stage originated from the Shanxi stage.A delta front was developed in the Huanxian region while a delta plain and front developed in the Pingliang-Zhenyuan region during the same time.Lakes originated only in the Zhenyuan-Huanxian-Huachi-Zhengning and Daning-Jixian zones.This analytical method shows that different palaeodrainage patterns can be effectively distinguished in order to forecast sedimentary facies.
基金supported by the Chinese National Key Project for Basic Research(grant No. 2011CB403007)the National Natural Science Foundation of China(grant No.41602127)
文摘Objective The Simao Basin in Yunnan Province has developed Cretaceous evaporite-bearing clastic deposits, including the Mangang and Mengyejing Formations which were originally interpreted as fluvial and lacustrine deposits. The Mangang Fm. composed of well-rounded quartz sandstones, were commonly considered as the bottom part of the Mengyejing salt series. Dttring last decades,
基金Projects 40872077 supported by the National Natural Science Foundation of China2008CDA098 by the Key Natural Science Foundation of Hubei Province
文摘Reconstructed synsedimentary paleogeomorpholgy is an effective method in predicting the distribution of sandbodies and can provide valid evidence in the search for reservoirs. Based on a synsedimentary paleogeomorpholgy reconstruction of the third member of the Dongying formation (Ed3) in the Qikou sag,the basic paleogeomorphic characteristics of Ed3 are described and the spatial distributions of denudation and subsidence areas are discussed. Key boundary faults controlling the deposition of important sediment bodies are proposed and the interrelations among faulted slope-break belts or flexure belts,intra-depression uplifts and sags,sediment sources and sediments input points have been investigated.
基金financially supported by the National Natural Science Foundation of China(No.42002133,42072150)Natural Science Foundation of Beijing(8204069)+1 种基金Strategic Cooperation Project of PetroChina and CUPB(ZLZX2020-01-06-01)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)
文摘Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.
基金financially supported by the Ministry of Land and Natural Resources (Grant No. 201311116)the National Natural Science Foundation of China (Grant No. 41173065)+1 种基金Ministry of Science and Technology (No. 2012FY120100)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology (Grant No. J1403)
文摘Detrital zircons in five sedimentary samples, MC1 to MC5, from the bottom of the Chuanlinggou Formation in the Ming Tombs District, Beijing, were dated with the LA-ICP-MS and SHRIMP U-Pb methods. Age spectra of the five samples show a major peak at 2500 Ma and a secondary peak at 2000 Ma, suggesting their provenances were mainly from the crystalline basement of the North China Craton and the Trans-North China Orogen. The youngest zircon has an age of 1673 d: 44 Ma, indicating that the Chuanlinggou Formation was deposited after this age. From sample MC4 to MC5, lithology changed from a clastic rock (fine-grained sandstone) to a carbonate rock (fine-grained dolomite), suggesting that the depositional basin became progressively deeper. The age spectrum of sample MC5 shows a major peak at 2500 Ma and a secondary peak at 2000 Ma. Sample MC4, which is stratigraphically lower than sample MC5, only had one peak at 2500 Ma. We conclude that there was a transgressive event when sediments represented by MC5 was deposited, and seawater carried ca. 2000 Ma clastic materials to the basin where the Chuanlinggou Formation was deposited, leading to the addition of ca. 2000 Ma detritus. Our research indicates that the source area for the sediments became more extensive with time. We conclude that the Chuanlinggou Formation in the Ming Tombs District was deposited in a low-energy mud fiat sedimentary environment in the inter-supra tidal zone because it is mainly composed of silty mudstone and fine-grained sandstone with relatively simple sedimentary structures.
基金National Natural Science Foundation of China(Grant No.42002133,42072150)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-06)for the financial supports and permissions to publish this paper
文摘Fine-grained sedimentary rocks have become a research focus as important reservoirs and source rocks for tight and shale oil and gas.Laminae development determines the accumulation and production of tight and shale oil and gas in fine-grained rocks.However,due to the resolution limit of conventional logs,it is challenging to recognize the features of centimeter-scale laminae.To close this gap,complementary studies,including core observation,thin section,X-ray diffraction(XRD),conventional log analysis,and slabs of image logs,were conducted to unravel the centimeter-scale laminae.The laminae recognition models were built using well logs.The fine-grained rocks can be divided into laminated rocks(lamina thickness of<0.01 m),layered rocks(0.01-0.1 m),and massive rocks(no layer or layer spacing of>0.1 m)according to the laminae scale from core observations.According to the mineral superposition assemblages from thin-section observations,the laminated rocks can be further divided into binary,ternary,and multiple structures.The typical mineral components,slabs,and T2spectrum distributions of various lamina types are unraveled.The core can identify the centimeter-millimeter-scale laminae,and the thin section can identify the millimeter-micrometer-scale laminae.Furthermore,they can detect mineral types and their superposition sequence.Conventional logs can identify the meter-scale layers,whereas image logs and related slabs can identify the laminae variations at millimeter-centimeter scales.Therefore,the slab of image logs combined with thin sections can identify laminae assemblage characteristics,including the thickness and vertical assemblage.The identification and classification of lamina structure of various scales on a single well can be predicted using conventional logs,image logs,and slabs combined with thin sections.The layered rocks have better reservoir quality and oil-bearing potential than the massive and laminated rocks.The laminated rocks’binary lamina is better than the ternary and multiple layers due to the high content of felsic minerals.The abovementioned results build the prediction model for multiscale laminae structure using well logs,helping sweet spots prediction in the Permian Lucaogou Formation in the Jimusar Sag and fine-grained sedimentary rocks worldwide.
基金the Natural Science Foundation of China(Grant No.41502136)the National Science and Technology Special Grant(Grant No.2017ZX05001-003).
文摘Accurately identifying and quantitatively describing abandoned channels in meandering rivers are of great significance for improving hydrocarbon recovery. By using modern deposition analogy, field outcrop analysis, a dense well spacing, core observations and a review of the literature, this paper studied the formation process and space–time amalgamation of abandoned channels in meandering river. The results reveal that formation mechanisms of abandoned channels include chute cutoff patterns(shoal-cutting, ditch-scouring and embayment-eroding patterns) and neck cutoff patterns. The chute cutoff pattern forms a gradually abandoned channel, while the neck cutoff pattern forms a suddenly abandoned channel. From upstream to downstream, the sedimentary pattern of the abandoned channel transforms from a chute cutoff pattern to a neck cutoff pattern, where the main controlling factors transition from the grain size and gradient to the flow and vegetation. An abandoned channel formed by a chute cutoff pattern consists mainly of siltstone, fine sandstone and thin gravel layers, which form a lithological-physical barrier. The abandoned channel formed by a neck cutoff pattern consists mainly of mudstone and argillaceous siltstone, forming a lithological barrier. Based on the amalgamation and structure of the reservoir architectural elements, the abandoned channel can be divided into three planar sedimentary patterns(crescent, semilune and horseshoe) for a single channel and five vertical sedimentary patterns for composite channels.
基金supported by the National Basic Research Program of China(Grant No.2012CB822002)the National Natural Science Foundation of China(Grant No.41202072)the "Key Laboratory of Northeast Asia biological evolution and environment of Ministry of Education" platform base construction project
文摘The Sifangtai and Mingshui formations were continuously cored in the SK-1 n borehole(China Cretaceous Continental Scientific Drilling-SongKe1-the north borehole).The core is 767.96 m long,and the recovery is 94.7%.The ages of the formations range from middle Campanian to Danian.The sequence and process of lithology-lithofacies and cyclic stratigraphy were described in detail.Eight litho-types compose the Sifangtai Formation,and 15 litho-types compose the Mingshui Formation.Deposition was predominantly in meandering river and lacustrine environments,including 10 microfacies in the Sifangtai Formation and 15 microfacies in the Mingshui Formation.The complete sequence is composed of 535 m-scale cycles(sixth-order cycle),152 fifth-order cycles,42 fourth-order cycles and five third-order cycles.The centimeter-scale description of the section revealed some previously unknown horizons such as a special type of mudstone,marl,volcanic ash and favorable sand reservoirs in the formations.The new-found evidence is very important for the interpretation of the evolution of the basin,conditions such as lake oxic events,the K/Pg boundary,tectonism in the late sag basin stage,and the reservoir-cap rock assemblages in the shallow stratigraphy.
文摘The Feixianguan formation in the Kaijiang-Liangping basin has been the focus of extensive research on multiple aspects. Based on field survey, core observation, laboratory analysis and seismic data interpretation, the sequence stratigraphy and sedimentary facies of the Kaijiang-Liangping area are studied. Four sequence boundaries and three maximum flooding surfaces of the Feixianguan formation are detected in this area. Three third-order sequences are identified as first sequence (SQ1), the second sequence (SQ2), and the third sequence (SQ3) in which SQ1 corresponds to the member 1 of the Feixianguan formation, SQ2 corresponds to the member 2, and SQ3 corresponds to the member 3 and member 4. Member 1, 2, 3 and 4 are lithologic sections divided by predecessors. On the basis of this sequence division and their sedimentary marks, the facies of the Feixianguan formation can be divided into open platform and evaporate platform categories. The open platform is composed of three subfacies identified as platform bank or basin marginal bank, interbank, and platform basin. Thus, a sedimentary evolution model is established. According to the sedimentary and seismic characteristics of the Kaijiang-Liangping area, we determine that two oolitic bank models, the aggradation model and the progradation model, are developed in this area. The aggradation model is developed in the Longgang region, which includes the basin marginal bank as a favorable exploring zone. The progradation model is developed in the Jiulongshan and Longhui areas, besides the basin marginal bank, the favorable exploration zones also include the oolitic bank developing areas of the inner basin.