The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high...The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.展开更多
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti...It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.展开更多
Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is s...Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.展开更多
Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration a...Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.展开更多
Background: Amniotic fluid turbidity increases with fetal lung maturation due to vernix and lung surfactant micelles suspended in the amniotic fluid. This study focused on this phenomenon and evaluated the presence or...Background: Amniotic fluid turbidity increases with fetal lung maturation due to vernix and lung surfactant micelles suspended in the amniotic fluid. This study focused on this phenomenon and evaluated the presence or absence of respiratory distress syndrome (RDS)/transient tachypnea of the newborn (TTN) by quantitatively assessing the brightness of the amniotic fluid turbidity using a noninvasive ultrasound histogram measurement function. Methods: We included cases of singleton pregnancies managed at the Niigata University Medical and Dental Hospital between November 2020 and March 2022. Histograms of amniotic fluid turbidity were measured at the center of the amniotic fluid depth, avoiding the fetus, placenta, and umbilical cord, with the gain setting set to 0, and the average value was obtained after three measurements. Histograms of fetal urine in the bladder were measured similarly. The value obtained by subtracting the fetal bladder brightness value from the amniotic brightness value based on histogram measurements was used as the final amniotic fluid brightness value. Results: We included 118 cases (16 of RDS/TTN and 102 of control). The gestational age of delivery weeks was correlated with amniotic fluid brightness (Spearman’s rank correlation coefficient was 0.344;p = 0.00014). Amniotic fluid brightness values were significantly lower in the RDS/TTN group than in the control group (RDS/TTN: 16.2 ± 13.5, control: 26.3 ± 16.3;p = 0.020). The optimal cutoff value of amniotic fluid brightness to predict RDS/TTN was 20.3. For predicting RDS/TTN, the sensitivity, specificity, positive predictive value, and negative predictive value were 91.7%, 69.6%, 26.2%, and 94.1%, respectively. Conclusions: The quantitative value of the amniotic fluid brightness by histogram measurements may provide an easy and objective index for evaluating the presence or absence of RDS/TTN.展开更多
The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived fr...The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s.Therefore,questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed.A new model based on weakly stable sediment is proposed(proposed failure propagation model for weakly stable sediments,WS S-PFP model for short)to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs.The model is based on two mechanisms:1)the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2)the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction.The proposed model will provide dynamic process interpretation for the study of deep-sea deposition,pollutant transport,and optical cable damage.展开更多
The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the...The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas.Based on a typical sinuous Quaternary channel(Channel I)in the Taranaki Basin,New Zealand,a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I,and the relationships between the quantitative parameters and the morphological changes of the Channel I,as well as the controlling factors affecting those morphological changes,were discussed.The results are as follows:(1)in the quantitative analysis,six parameters were selected:the channel depth,width,sinuosity,and aspect ratio(width/depth),the channel swing amplitude(λ)and the channel bend frequency(ω);(2)according to the quantitative morphological parameters of the channel(mainly including three parameters such as channel sinuosity,ωandλ),the Channel I was divided into three types:the low-sinuous channel(LSC),the high-sinuous channel(HSC),the moderate-sinuous channel(MSC).U-shaped channel cross-sections developed in the LSC,V-shaped channel cross-sections developed in the HSC,including inclined-V and symmetric-V cross-sections,and dish-shaped channel cross-sections developed in the MSC;(3)the morphological characteristics of the LSC and MSC were related to their widths and depths,while the morphology of the HSC was greatly affected by the channel width,a change in depth did not affect the HSC morphology;(4)the morphological changes of the Channel I were controlled mainly by the slope gradient,the restricted capacity of the channel and the differential in fluid properties.展开更多
The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, g...The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.展开更多
Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater ta...Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.展开更多
The turbidity and fluorescence of suspended particulate matter (SPM) in the Taiwan Bank and adjacent waters were investigated during July-August, 2004, to examine the effects of the marine sediments re-suspension an...The turbidity and fluorescence of suspended particulate matter (SPM) in the Taiwan Bank and adjacent waters were investigated during July-August, 2004, to examine the effects of the marine sediments re-suspension and sedimentary processes on the turbidity and fluorescence distribution of SPM. The results show that the turbidity of SPM is affected by the re-suspension of marine sediment in the near shore and continental shelf outer fringe, but not obvious in the shoal. The enrichment of phytoplankton has some effects on the turbidity in the continental shelf outer fringe, but not evident in the near shore. This is helpful for better understanding the distribution of turbidity and fluorescence in the adjacent waters of Taiwan Bank.展开更多
In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynam...In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.展开更多
Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, a...Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.展开更多
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil produ...The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.展开更多
Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's...Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas.展开更多
The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport ...The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.展开更多
Sediment convergence and resuspension are the two major mechanisms in forming turbidity maximum (TM) in the Changjiang Estuary. Sediment convergence is mainly controlled by the interaction between runoff and tidal cu...Sediment convergence and resuspension are the two major mechanisms in forming turbidity maximum (TM) in the Changjiang Estuary. Sediment convergence is mainly controlled by the interaction between runoff and tidal current, the mixing of freshwater and salt water, the former forming tidal TM, whereas the latter forming brackish TM. The TM in the Changjiang Estuary is characterized by a combination of tidal TM and brackish TM, which varies temporally and spatially.展开更多
Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination ...Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.展开更多
Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the res...Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semiquantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials(core, outcrop, logging and seismic data),employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral,indented and swing stacking in section view. Based on external morphological characteristics and boundaries,channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs.展开更多
Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water d...Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water deposits have been recognized in the continuous core rocks from the SKII, including mudstone of still water, marlite, dolostone, off shale, volcanic ashes, turbidite, slump sediment, tempestite, seismite, ostracoda limestone and sparry carbonate, which are divided into two types: microfacies generated due to gradually changing environments (Ⅰ) and microfacies generated due to geological events (Ⅱ). Type Ⅰ is composed of some special fine grain sediments such as marlite, dolomite stone and oil shale as well as mudstone and Type Ⅱ is composed of some sediments related to geological events, such as volcanic ashes, turbiditie, slump sediment, tempestite, seismite, ostracoda limestone. The formation of sparry carbonate may be controlled by factors related to both environments and events. Generally, mudstone sediments of still water can be regarded as background sediments, and the rest sediments are all event sediments, which have unique forming models, which may reflect controlling effects of climatics and tectonics.展开更多
To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Lon...To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Longhupao Reservoir in Heilongjiang Province for the removal of turbidity, COl), UV254 and residual Al. Coagulation test shows that the coagulation enhanced by CBF and PAFC exhibits more effective performance than that enhanced by the individual of them, and the total combination dosage is lower than that of the individual. The residual Al from PAFC can be removed efficiently by CBF. The removal efficiency of turbidity reaches 76.6% by combining CBF of 2 mg/L and PAFC of 15 mg/L, COl) is decreased from 3.80 mg/L to 1.62 mg/ L, and the concentration of residual Al is only 0. 033 mg/L in the product water. It can be speculated that adsorption-bridging and sweep-coagulation processes are predominant in the flocculation process by the combination of CBF and PAFC.展开更多
基金Supported by the National Natural Science Foundation of China(91528303)CNOOC Technology Project(2021-KT-YXKY-05).
文摘The coupling relationship between shelf-edge deltas and deep-water fan sand bodies is a hot and cutting-edge field of international sedimentology and deep-water oil and gas exploration.Based on the newly acquired high-resolution 3D seismic,logging and core data of Pearl River Mouth Basin(PRMB),this paper dissected the shelf-edge delta to deep-water fan(SEDDF)depositional system in the Oligocene Zhuhai Formation of Paleogene in south subsag of Baiyun Sag,and revealed the complex coupling relationship from the continental shelf edge to deep-water fan sedimentation and its genetic mechanisms.The results show that during the deposition of the fourth to first members of the Zhuhai Formation,the scale of the SEDDF depositional system in the study area showed a pattern of first increasing and then decreasing,with deep-water fan developed in the third to first members and the largest plane distribution scale developed in the late stage of the second member.Based on the development of SEDDF depositional system along the source direction,three types of coupling relationships are divided,namely,deltas that are linked downdip to fans,deltas that lack downdip fans and fans that lack updip coeval deltas,with different depositional characteristics and genetic mechanisms.(1)Deltas that are linked downdip to fans:with the development of shelf-edge deltas in the shelf area and deep-water fans in the downdip slope area,and the strong source supply and relative sea level decline are the two key factors which control the development of this type of source-to-sink(S2S).The development of channels on the continental shelf edge is conducive to the formation of this type of S2S system even with weak source supply and high sea level.(2)Deltas that lack downdip fans:with the development of shelf edge deltas in shelf area,while deep water fans are not developed in the downdip slope area.The lack of“sources”and“channels”,and fluid transformation are the three main reasons for the formation of this type of S2S system.(3)Fans that lack updip coeval deltas:with the development of deep-water fans in continental slope area and the absence of updip coeval shelf edge deltas,which is jointly controlled by the coupling of fluid transformation at the shelf edge and the“channels”in the continental slope area.
文摘It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks.
基金supported by the National Science and Technology Major Project of China(2016ZX05033)the Project of SINOPEC Science and Technology Department(P19021-2)the Basic Prospective Research Project of SINOPEC(P22214-2).
文摘Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.
基金The National Natural Science Foundation of China under contract Nos 42077410 and 41872112。
文摘Deep-water channel systems are important petroleum reservoirs,and many have been discovered worldwide.Understanding deep-water channel sedimentary elements and evolution is helpful for deep-sea petroleum exploration and development.Based on high-resolution 3D seismic data,the Miocene channel system in the deep-water Taranaki Basin,New Zealand,was analyzed by using seismic interpretation techniques such as interlayer attribute extraction and strata slicing.The channel system was divided into five composite channels(CC-I to CC-V)according to four secondary level channel boundaries,and sedimentary elements such as channels,slump deposits,inner levees,mass transport deposits,and hemipelagic drape deposits were identified in the channel system.The morphological characteristics of several composite channels exhibited stark variances,and the overall morphology of the composite channels changed from relatively straight to highly sinuous to relatively straight.The evolution of the composite channels involved a gradual and repeated process of erosion and filling,and the composite channels could be divided into three evolutionary stages:initial erosion-filling,later erosion-filling(multistage),and channel abandonment.The middle Miocene channel system may have formed as a consequence of combined regional tectonic activity and global climatic change,and its intricate morphological alterations may have been influenced by the channel's ability to self-regulate and gravity flow properties.When studying the sedimentary evolution of a large-scale deep-water channel system in the Taranaki Basin during the Oligocene-Miocene,which transitioned from a passive margin to plate convergence,it can be understood how tectonic activity affected the channel and can also provide a theoretical reference for the evolution of the deepwater channels in areas with similar tectonic conversion environments around the world.
文摘Background: Amniotic fluid turbidity increases with fetal lung maturation due to vernix and lung surfactant micelles suspended in the amniotic fluid. This study focused on this phenomenon and evaluated the presence or absence of respiratory distress syndrome (RDS)/transient tachypnea of the newborn (TTN) by quantitatively assessing the brightness of the amniotic fluid turbidity using a noninvasive ultrasound histogram measurement function. Methods: We included cases of singleton pregnancies managed at the Niigata University Medical and Dental Hospital between November 2020 and March 2022. Histograms of amniotic fluid turbidity were measured at the center of the amniotic fluid depth, avoiding the fetus, placenta, and umbilical cord, with the gain setting set to 0, and the average value was obtained after three measurements. Histograms of fetal urine in the bladder were measured similarly. The value obtained by subtracting the fetal bladder brightness value from the amniotic brightness value based on histogram measurements was used as the final amniotic fluid brightness value. Results: We included 118 cases (16 of RDS/TTN and 102 of control). The gestational age of delivery weeks was correlated with amniotic fluid brightness (Spearman’s rank correlation coefficient was 0.344;p = 0.00014). Amniotic fluid brightness values were significantly lower in the RDS/TTN group than in the control group (RDS/TTN: 16.2 ± 13.5, control: 26.3 ± 16.3;p = 0.020). The optimal cutoff value of amniotic fluid brightness to predict RDS/TTN was 20.3. For predicting RDS/TTN, the sensitivity, specificity, positive predictive value, and negative predictive value were 91.7%, 69.6%, 26.2%, and 94.1%, respectively. Conclusions: The quantitative value of the amniotic fluid brightness by histogram measurements may provide an easy and objective index for evaluating the presence or absence of RDS/TTN.
基金Supported by the National Natural Science Foundation of China(Nos.42206055,41976049)the Taishan Scholar Project of Shandong Province(No.TS20190913)the Fundamental Research Funds for the Central Universities(No.202061028)。
文摘The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains.Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s.Therefore,questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed.A new model based on weakly stable sediment is proposed(proposed failure propagation model for weakly stable sediments,WS S-PFP model for short)to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs.The model is based on two mechanisms:1)the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2)the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction.The proposed model will provide dynamic process interpretation for the study of deep-sea deposition,pollutant transport,and optical cable damage.
基金The National Natural Science Foundation of China under contract Nos 42077410,41872112 and 42002031the Key Scientific Research Projects in University of Henan Province under contract No.18A170007.
文摘The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs,so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas.Based on a typical sinuous Quaternary channel(Channel I)in the Taranaki Basin,New Zealand,a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I,and the relationships between the quantitative parameters and the morphological changes of the Channel I,as well as the controlling factors affecting those morphological changes,were discussed.The results are as follows:(1)in the quantitative analysis,six parameters were selected:the channel depth,width,sinuosity,and aspect ratio(width/depth),the channel swing amplitude(λ)and the channel bend frequency(ω);(2)according to the quantitative morphological parameters of the channel(mainly including three parameters such as channel sinuosity,ωandλ),the Channel I was divided into three types:the low-sinuous channel(LSC),the high-sinuous channel(HSC),the moderate-sinuous channel(MSC).U-shaped channel cross-sections developed in the LSC,V-shaped channel cross-sections developed in the HSC,including inclined-V and symmetric-V cross-sections,and dish-shaped channel cross-sections developed in the MSC;(3)the morphological characteristics of the LSC and MSC were related to their widths and depths,while the morphology of the HSC was greatly affected by the channel width,a change in depth did not affect the HSC morphology;(4)the morphological changes of the Channel I were controlled mainly by the slope gradient,the restricted capacity of the channel and the differential in fluid properties.
基金Supported by the CNPC Basic and Prospective Key Scientific and Technological Project (2021DJ24)。
文摘The history and results of petroleum exploration in the Santos Basin, Brazil are reviewed. The regularity of hydrocarbon enrichment and the key exploration technologies are summarized and analyzed using the seismic, gravity, magnetic and drilling data. It is proposed that the Santos Basin had a structural pattern of two uplifts and three depressions and the Aram-Uirapuru uplift belt controlled the hydrocarbon accumulation. It is believed that the main hydrocarbon source kitchen in the rift period controlled the hydrocarbon-enriched zones, paleo-structures controlled the scale and quality of lacustrine carbonate reservoirs, and continuous thick salt rocks controlled the hydrocarbon formation and preservation. The process and mechanism of reservoirs being transformed by CO_(2)charging were revealed. Five key exploration technologies were developed,including the variable-velocity mapping for layer-controlled facies-controlled pre-salt structures, the prediction of lacustrine carbonate reservoirs, the prediction of intrusive/effusive rock distribution, the detection of hydrocarbons in lacustrine carbonates, and the logging identification of supercritical CO_(2)fluid. These theoretical recognitions and exploration technologies have contributed to the discovery of deep-water super-large reservoirs under CNODC projects in Brazil, and will guide the further exploration of deep-water large reservoirs in the Santos Basin and other similar regions.
基金supported by the National Natural Science Foundation of China (No.52394252)the Postdoctoral Fellowship Program of CPSF (No.GZC20232497)+2 种基金the Key Research and Development Program of Shandong Province,China (No.2021ZLGX04)the Shandong Postdoctoral Science Foundation (No.SDBX2023012)the Qingdao Postdoctoral Program Grant (No.QDBSH20230202009)。
文摘Underwater target motion estimation is a challenge for ocean military and scientific research.In this work,we propose a method based on the combination of polarization imaging and optical flow for turbid underwater target detection.Polarization imaging can reduce the influence of backscattered light and obtain high-quality images underwater.The optical flow shows the motion and structural information of the target.We use polarized optical flow to obtain the optical flow field and estimate the target motion.The experimental results of different targets under varying water turbidity levels illustrate that our method is realizable and robust.The precision is verified by comparing the results with the precise displacement data and calculating two error measures.The proposed method based on polarized optical flow can obtain accurate displacement information and a good recognition effect.Moving target segmentation based on the Otsu method further proves the superiority of the polarized optical flow under turbid water.This study is valuable for target detection and motion estimation in scattering environments.
基金supported by the SOA Science Fund for Youths of China(2008316)Fujian Provincial Natural Science Foundation of China(2006J0288)
文摘The turbidity and fluorescence of suspended particulate matter (SPM) in the Taiwan Bank and adjacent waters were investigated during July-August, 2004, to examine the effects of the marine sediments re-suspension and sedimentary processes on the turbidity and fluorescence distribution of SPM. The results show that the turbidity of SPM is affected by the re-suspension of marine sediment in the near shore and continental shelf outer fringe, but not obvious in the shoal. The enrichment of phytoplankton has some effects on the turbidity in the continental shelf outer fringe, but not evident in the near shore. This is helpful for better understanding the distribution of turbidity and fluorescence in the adjacent waters of Taiwan Bank.
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)
文摘In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.
基金National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05006-003)the Fundamental Research Funds for the Central Universities (Grant No.14CX06070A)
文摘Deep-water gravity flows are one of the most important sediment transport mechanisms on Earth. After 60 years of study, significant achievements have been made in terms of classification schemes, genetic mechanisms, and depositional models of deep-water gravity flows. The research history of deep-water gravity flows can be divided into five stages: incipience of turbidity current theory; formation of turbidity current theory; development of deep-water gravity flow theory; improvement and perfection of deep-water gravity flow theory; and comprehensive development of deep-water gravity flow theory. Currently, three primary classification schemes based on the sediment support mechanism, the rheology and transportation process, and the integration of sediment support mechanisms, rheology, sedimentary characteristics, and flow state are commonly used.Different types of deep-water gravity flow events form different types of gravity flow deposits. Sediment slump retransportation mainly forms muddy debris flows, sandy debris flows, and surge-like turbidity currents. Resuspension of deposits by storms leads to quasi-steady hyperpycnal turbidity currents (hyperpycnal flows). Sustainable sediment supplies mainly generate muddy debris flows, sandy debris flows, and hyperpycnal flows. Deep-water fans, which are commonly controlled by debris flows and hyperpycnal flows, are triggered by sustainable sediment supply; in contrast, deep-water slope sedimentary deposits consist mainly of debris flows that are triggered by the retransportation of sediment slumps and deep-water fine-grained sedimentary deposits are derived primarily from fine- grained hyperpycnal flows that are triggered by the resuspension of storm deposits. Harmonization of classification schemes, transformation between different types of gravity flow deposit, and monitoring and reproduction of the sedimentary processes of deep-water gravity flows as well as a source-to-sink approach to document the evolution and deposition of deep-water gravity flows are the most important research aspects for future studies of deep-water gravity flows study in the future.
基金This study was supported by the project“the deep-water fan systems and petroleum resources in the South China Sea”(grant 40238060)sponsored by the Natural Science Foundation of China and the China National Offshore Oil Corporation.
文摘The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Science Foundation of China under contract Nos 41476032,91028009 and 40806019
文摘Turbidity currents represent a major agent for sediment transport in lakes, seas and oceans. In particu-lar, they formulate the most significant clastic accumulations in the deep sea, which become many of the world's most important hydrocarbon reservoirs. Several boreholes in the Qiongdongnan Basin, the north-western South China Sea, have recently revealed turbidity current deposits as significant hydrocarbon res-ervoirs. However, there are some arguments for the potential provenances. To solve this problem, it is es-sential to delineate their sedimentary processes as well as to evaluate their qualities as reservoir. Numerical simulations have been developed rapidly over the last several years, offering insights into turbidity current behaviors, as geologically significant turbidity currents are difficult to directly investigate due to their large scale and often destructive nature. Combined with the interpretation of the turbidity system based on high-resolution 3D seismic data, the paleotophography is acquired via a back-stripping seismic profile integrated with a borehole, i.e., Well A, in the western Qiongdongnan Basin; then a numerical model is built on the basis of this back-stripped profile. After defining the various turbidity current initial boundary conditions, includ-ing grain size, velocity and sediment concentration, the structures and behaviors of turbidity currents are investigated via numerical simulation software ANSYS FLUENT. Finally, the simulated turbidity deposits are compared with the interpreted sedimentary bodies based on 3D seismic data and the potential provenances of the revealed turbidites by Well A are discussed in details. The simulation results indicate that a sedimen-tary body develops far away from its source with an average grain size of 0.1 mm, i.e., sand-size sediment. Taking into account the location and orientation of the simulated seismic line, the consistence between normal forward simulation results and the revealed cores in Well A indicates that the turbidites should have been transported from Vietnam instead of Hainan Island. This interpretation has also been verified by the planar maps of sedimentary systems based on integration of boreholes and seismic data. The identification of the turbidity provenance will benefit the evaluation of extensively distributed submarine fans for hydro-carbon exploration in the deepwater areas.
基金Supported by the National Natural Science Foundation of China(41802127,U1762217)China National Science and Technology Major Project(2016ZX05006-003)。
文摘The types,evolution processes,formation mechanisms,and depositional models of deep-water gravity flow deposits in a lacustrine rift basin are studied through core observation and systematic analysis.Massive transport of slide and slump,fluid transport of debris flow and turbidity currents are driven by gravity in deep-water lacustrine environment.The transformation between debris flow and turbidity current,and the transformation of turbidity current between supercritical and subcritical conditions are the main dynamic mechanisms of gravity flow deposits in a lake basin.The erosion of supercritical turbidity current controls the formation of gravity-flow channel.Debris flow deposition gives rise to tongue shape lobe rather than channel.Deep-water gravity flow deposits are of two origins,intrabasinal and extrabasinal.Intrabasinal gravity flow deposits occur as single tongue-shape lobe or fan of stacking multiple lobes.Extrabasinal gravity-flow deposits occur as sublacustrine fan with channel or single channel sand body.However,the nearshore subaqueous fan is characterized by fan of stacking multiple tongue shape lobes without channel.The differential diagenesis caused by differentiation in the nearshore subaqueous fan facies belt results in the formation of diagenetic trap.The extrabasinal gravity flow deposits are one of the important reasons for the abundant deep-water sand bodies in a lake basin.Slide mass-transport deposits form a very important type of lithologic trap near the delta front often ignored.The fine-grained sediment caused by flow transformation is the potential"sweet spot"of shale oil and gas.
基金the National Natural Science Foundation of China under contract! No. 9487005.
文摘Sediment convergence and resuspension are the two major mechanisms in forming turbidity maximum (TM) in the Changjiang Estuary. Sediment convergence is mainly controlled by the interaction between runoff and tidal current, the mixing of freshwater and salt water, the former forming tidal TM, whereas the latter forming brackish TM. The TM in the Changjiang Estuary is characterized by a combination of tidal TM and brackish TM, which varies temporally and spatially.
文摘Due to its structure,rock and mineral composition,fluid and other factors,the granite Buried Hill Reservoir is highly heterogeneous with a complex longitudinal structure and a reservoir space made up of a combination of dissolution pores and fractures.This paper is based on current understanding of tectonic evolution in the northern part of the South China Sea,in conjunction with the seismic phase characteristics.It is determined that the meshed fault system was formed by three stages of movement-tectonic compression orogeny during the Indochinese epoch,strike-slip compression-tension during the Yanshanian Period,early fracture extension activation during the Himalayan-which controlled the distribution of the Buried Hill Reservoir.Drilling revealed two types of buried hills,faulted anticline and fault horst,their longitudinal structure and the reservoir space type being significantly different.The mineral composition,reservoir space and diagenetic characteristics of the reservoir rocks and minerals were analyzed by lithogeochemistry,micro section and logging etc.,it thus being determined that the Mesozoic rocks of the Songnan Low Uplift in the Qiongdongnan Basin are mainly composed of syenogranite,granodiorite,monzogranite,which is the material basis for the development of the Buried Hill Reservoir.The content of felsic and other brittle minerals is more than 70%,making it easy for it to be transformed into fractures.At the same time,the weathering resistance of granodiorite and monzogranite is weaker than that of syenogranite,which is easily weathered and destroyed,forming a thick sand gravel weathering zone.With increasing depth of burial,weathering and dissolution gradually weaken,the deep acidic fluid improving the reservoir property of internal fractures and expanding the vertical distribution range of the reservoirs.The research results lay a foundation for the exploration of Buried Hill in the deep-water area of the Qiongdongnan Basin.
基金supported by the National Major Scientific and Technological Special Project during the Thirteenth Five-year Plan Period (2016ZX05033-003-002)the Project of Sinopec Science and Technology Development Department (G580015-ZS-KJB016)
文摘Turbidity channels have been considered as one of the important types of deepwater reservoir, and the study of their architecture plays a key role in efficient development of an oil field. To better understand the reservoir architecture of the lower Congo Basin M oilfield, semiquantitative–quantitative study on turbidity channel depositional architecture patterns in the middle to lower slopes was conducted with the aid of abundant high quality materials(core, outcrop, logging and seismic data),employing seismic stratigraphy, seismic sedimentology and sedimentary petrography methods. Then, its sedimentary evolution was analyzed accordingly. The results indicated that in the study area, grade 3 to grade 5 architecture units were single channel, complex channel and channel systems, respectively. Single channel sinuosity is negatively correlated with the slope, as internal grains became finer and thickness became thinner from bottom to top, axis to edge. The migration type of a single channel within one complex channel can be lateral migration and along paleocurrent migration horizontally, and lateral,indented and swing stacking in section view. Based on external morphological characteristics and boundaries,channel systems are comprised of a weakly confining type and a non-confining type. The O73 channel system can be divided into four complex channels named S1–S4, from bottom to top, with gradually less incision and more accretion. The study in this article will promote deeper understanding of turbidity channel theory, guide 3D geological modeling in reservoir development and contribute to efficient development of such reservoirs.
文摘Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water deposits have been recognized in the continuous core rocks from the SKII, including mudstone of still water, marlite, dolostone, off shale, volcanic ashes, turbidite, slump sediment, tempestite, seismite, ostracoda limestone and sparry carbonate, which are divided into two types: microfacies generated due to gradually changing environments (Ⅰ) and microfacies generated due to geological events (Ⅱ). Type Ⅰ is composed of some special fine grain sediments such as marlite, dolomite stone and oil shale as well as mudstone and Type Ⅱ is composed of some sediments related to geological events, such as volcanic ashes, turbiditie, slump sediment, tempestite, seismite, ostracoda limestone. The formation of sparry carbonate may be controlled by factors related to both environments and events. Generally, mudstone sediments of still water can be regarded as background sediments, and the rest sediments are all event sediments, which have unique forming models, which may reflect controlling effects of climatics and tectonics.
文摘To investigate the application of compound bioflocculant (CBF) in drinking water treatment at pilot plant, CBF and polymerized aluminium ferrum chloride (PAFC) coagulant were used to treat raw water taken from Longhupao Reservoir in Heilongjiang Province for the removal of turbidity, COl), UV254 and residual Al. Coagulation test shows that the coagulation enhanced by CBF and PAFC exhibits more effective performance than that enhanced by the individual of them, and the total combination dosage is lower than that of the individual. The residual Al from PAFC can be removed efficiently by CBF. The removal efficiency of turbidity reaches 76.6% by combining CBF of 2 mg/L and PAFC of 15 mg/L, COl) is decreased from 3.80 mg/L to 1.62 mg/ L, and the concentration of residual Al is only 0. 033 mg/L in the product water. It can be speculated that adsorption-bridging and sweep-coagulation processes are predominant in the flocculation process by the combination of CBF and PAFC.