Existing pressure drilling technologies are based on different principles and display distinct characteristics in terms of control pressure and degree of formation adaptability.In the present study,the constant-bottom...Existing pressure drilling technologies are based on different principles and display distinct characteristics in terms of control pressure and degree of formation adaptability.In the present study,the constant-bottomhole-pressure(CBHP)and controlled-mud-level(CML)dual gradient drilling methods are considered.Models for the equivalent circulating density(ECD)are introduced for both drilling methods,taking into account the control pressure parameters(wellhead back pressure,displacement,mud level,etc.)and the relationship between the equivalent circulating density curve in the wellbore and two different types of pressure profiles in deep-water areas.The findings suggest that the main pressure control parameter for CBHP drilling is the wellhead back pressure,while for CML dual gradient drilling,it is the mud level.Two examples are considered(wells S1 and B2).For S1,CML dual gradient drilling only needs to adjust the ECD curve once to drill down to the target layer without risk.By comparison,CBHP drilling requires multiple adjustments to reach the target well depth avoiding a kick risk.In well B2,the CBHP method can drill down to the desired zone or even deeper after a single adjustment of the ECD curve.In contrast,CML dual-gradient drilling requires multiple adjustments to reach the target well depth(otherwise there is a risk of lost circulation).Therefore,CML dual-gradient drilling should be considered as a better choice for well S1,while CBHP drilling is more suitable for well B2.展开更多
This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technol...This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.展开更多
文摘Existing pressure drilling technologies are based on different principles and display distinct characteristics in terms of control pressure and degree of formation adaptability.In the present study,the constant-bottomhole-pressure(CBHP)and controlled-mud-level(CML)dual gradient drilling methods are considered.Models for the equivalent circulating density(ECD)are introduced for both drilling methods,taking into account the control pressure parameters(wellhead back pressure,displacement,mud level,etc.)and the relationship between the equivalent circulating density curve in the wellbore and two different types of pressure profiles in deep-water areas.The findings suggest that the main pressure control parameter for CBHP drilling is the wellhead back pressure,while for CML dual gradient drilling,it is the mud level.Two examples are considered(wells S1 and B2).For S1,CML dual gradient drilling only needs to adjust the ECD curve once to drill down to the target layer without risk.By comparison,CBHP drilling requires multiple adjustments to reach the target well depth avoiding a kick risk.In well B2,the CBHP method can drill down to the desired zone or even deeper after a single adjustment of the ECD curve.In contrast,CML dual-gradient drilling requires multiple adjustments to reach the target well depth(otherwise there is a risk of lost circulation).Therefore,CML dual-gradient drilling should be considered as a better choice for well S1,while CBHP drilling is more suitable for well B2.
文摘This study reviews the development history of PetroChina’s overseas oil and gas field development technologies, summarizes the characteristic technologies developed, and puts forward the development goals and technological development directions of overseas business to overcome the challenges met in overseas oil and gas production. In the course of PetroChina’s overseas oil and gas field production practice of more than 20 years, a series of characteristic technologies suitable for overseas oil and gas fields have been created by combining the domestic mature oil and gas field production technologies with the features of overseas oil and gas reservoirs, represented by the technology for high-speed development and stabilizing oil production and controlling water rise for overseas sandstone oilfields, high efficiency development technology for large carbonate oil and gas reservoirs and foamy oil depletion development technology in use of horizontal wells for extra-heavy oil reservoirs. Based on in-depth analysis of the challenges faced by overseas oil and gas development and technological requirements, combined with the development trends of oil and gas development technologies in China and abroad, overseas oil and gas development technologies in the future are put forward, including artificial intelligence reservoir prediction and 3 D geological modeling, secondary development and enhanced oil recovery(EOR) of overseas sandstone oilfields after high speed development, water and gas injection to improve oil recovery in overseas carbonate oil and gas reservoirs, economic and effective development of overseas unconventional oil and gas reservoirs, efficient development of marine deep-water oil and gas reservoirs. The following goals are expected to be achieved: keep the enhanced oil recovery(EOR) technology for high water-cut sandstone oilfield at international advanced level, and make the development technology for carbonate oil and gas reservoirs reach the international advanced level, and the development technologies for unconventional and marine deep-water oil and gas reservoirs catch up the level of international leading oil companies quickly.