In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current secu...In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.展开更多
The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collec...The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collected data from 300 undergraduate students of Al Neelain University.The first step’s initial population placements were created using Particle Swarm Optimization(PSO).Then,using adaptive feature space search,Educational Grey Wolf Optimization(EGWO)was employed to choose the optimal attribute combination.The second stage uses the SVMclassifier to forecast classification accuracy.Different classifiers were utilized to evaluate the performance of students.According to the results,it was revealed that AI could forecast the final grades of students with an accuracy rate of 97%on the test dataset.Furthermore,the present study showed that successful students could be selected by the Decision Tree model with an efficiency rate of 87.50%and could be categorized as having equal information ratio gain after the semester.While the random forest provided an accuracy of 28%.These findings indicate the higher accuracy rate in the results when these models were implemented on the data set which provides significantly accurate results as compared to a linear regression model with accuracy(12%).The study concluded that the methodology used in this study can prove to be helpful for students and teachers in upgrading academic performance,reducing chances of failure,and taking appropriate steps at the right time to raise the standards of education.The study also motivates academics to assess and discover EDM at several other universities.展开更多
Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by effor...Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations.展开更多
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte...Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.展开更多
Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one ...Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one of the most complex machine learning tasks in recent times.Numerous models rely on various parameters,such as the detection rate,position,and direction of human body components in RGB images.This paper presents robust human activity analysis for event recognition via the extraction of contextual intelligence-based features.To use human interaction image sequences as input data,we first perform a few denoising steps.Then,human-to-human analyses are employed to deliver more precise results.This phase follows feature engineering techniques,including diverse feature selection.Next,we used the graph mining method for feature optimization and AdaBoost for classification.We tested our proposed HVAA model on two benchmark datasets.The testing of the proposed HVAA system exhibited a mean accuracy of 92.15%for the Sport Videos in theWild(SVW)dataset.The second benchmark dataset,UT-interaction,had a mean accuracy of 92.83%.Therefore,these results demonstrated a better recognition rate and outperformed other novel techniques in body part tracking and event detection.The proposed HVAA system can be utilized in numerous real-world applications including,healthcare,surveillance,task monitoring,atomic actions,gesture and posture analysis.展开更多
With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content...With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content,a low-disturbance pressure-preserving corer was developed.The measurement of gas content using this corer was analyzed.The coring test platform was used to complete a coring function test.A pressurized core with a diameter of 50 mm was obtained.The pressure was 0.15 MPa,which was equal to the pressure of the liquid column of the cored layer,indicating that the corer can be successfully used in a mud environment.Next,a pressure test of the corer was conducted.The results showed that under conditions of low pressure(8 MPa)and high pressure(25 MPa),the internal pressure of the corer remained stable for more than 1 h,indicating that the corer has good ability to maintain pressure.Therefore,the corer can be applied at deep coal mine sites.The results of this research can be used to promote the safe exploitation of deep coal mines and the exploitation of methane resources in coalbeds.展开更多
Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models ca...Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models can be utilized for effectual rainfall prediction.With this motivation,this article develops a novel comprehensive oppositionalmoth flame optimization with deep learning for rainfall prediction(COMFO-DLRP)Technique.The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes.Primarily,data pre-processing and correlation matrix(CM)based feature selection processes are carried out.In addition,deep belief network(DBN)model is applied for the effective prediction of rainfall data.Moreover,COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning(COBL)with traditional MFO algorithm.Finally,the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model.For demonstrating the improved outcomes of the COMFO-DLRP approach,a sequence of simulations were carried out and the outcomes are assessed under distinct measures.The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques.展开更多
Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary dom...Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques.展开更多
基金This work is supported by the Provincial Key Science and Technology Special Project of Henan(No.221100240100)。
文摘In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2024/R/1445).
文摘The study aims to recognize how efficiently Educational DataMining(EDM)integrates into Artificial Intelligence(AI)to develop skills for predicting students’performance.The study used a survey questionnaire and collected data from 300 undergraduate students of Al Neelain University.The first step’s initial population placements were created using Particle Swarm Optimization(PSO).Then,using adaptive feature space search,Educational Grey Wolf Optimization(EGWO)was employed to choose the optimal attribute combination.The second stage uses the SVMclassifier to forecast classification accuracy.Different classifiers were utilized to evaluate the performance of students.According to the results,it was revealed that AI could forecast the final grades of students with an accuracy rate of 97%on the test dataset.Furthermore,the present study showed that successful students could be selected by the Decision Tree model with an efficiency rate of 87.50%and could be categorized as having equal information ratio gain after the semester.While the random forest provided an accuracy of 28%.These findings indicate the higher accuracy rate in the results when these models were implemented on the data set which provides significantly accurate results as compared to a linear regression model with accuracy(12%).The study concluded that the methodology used in this study can prove to be helpful for students and teachers in upgrading academic performance,reducing chances of failure,and taking appropriate steps at the right time to raise the standards of education.The study also motivates academics to assess and discover EDM at several other universities.
基金Funding for this research was provided by the National Natural Science Foundation of China (42022052,42277138,and 52108337)the National Key R&D Program of China (2022YFC2803800)+1 种基金the Shandong Provincial Natural Science Foundation (ZR2020YQ29)UCL's Department of Civil,Environmental and Geomatic Engineering,and Ocean University of China.
文摘Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/142/43).
文摘Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions.
文摘Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one of the most complex machine learning tasks in recent times.Numerous models rely on various parameters,such as the detection rate,position,and direction of human body components in RGB images.This paper presents robust human activity analysis for event recognition via the extraction of contextual intelligence-based features.To use human interaction image sequences as input data,we first perform a few denoising steps.Then,human-to-human analyses are employed to deliver more precise results.This phase follows feature engineering techniques,including diverse feature selection.Next,we used the graph mining method for feature optimization and AdaBoost for classification.We tested our proposed HVAA model on two benchmark datasets.The testing of the proposed HVAA system exhibited a mean accuracy of 92.15%for the Sport Videos in theWild(SVW)dataset.The second benchmark dataset,UT-interaction,had a mean accuracy of 92.83%.Therefore,these results demonstrated a better recognition rate and outperformed other novel techniques in body part tracking and event detection.The proposed HVAA system can be utilized in numerous real-world applications including,healthcare,surveillance,task monitoring,atomic actions,gesture and posture analysis.
基金supported by the National Natural Science Foundation of China(No.51827901)the National Natural Science Foundation of China(No.52225403)+1 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams of China(No.2019ZT08G315)the Sichuan Science and Technology Program of China(No.2023NSFSC0780).
文摘With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content,a low-disturbance pressure-preserving corer was developed.The measurement of gas content using this corer was analyzed.The coring test platform was used to complete a coring function test.A pressurized core with a diameter of 50 mm was obtained.The pressure was 0.15 MPa,which was equal to the pressure of the liquid column of the cored layer,indicating that the corer can be successfully used in a mud environment.Next,a pressure test of the corer was conducted.The results showed that under conditions of low pressure(8 MPa)and high pressure(25 MPa),the internal pressure of the corer remained stable for more than 1 h,indicating that the corer has good ability to maintain pressure.Therefore,the corer can be applied at deep coal mine sites.The results of this research can be used to promote the safe exploitation of deep coal mines and the exploitation of methane resources in coalbeds.
基金the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/180/43)Princess Nourah bint Abdulrahman UniversityResearchers Supporting Project number(PNURSP2022R235)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research atUmmAl-Qura University for supporting this work by Grant Code:(22UQU4270206DSR01).
文摘Data mining process involves a number of steps fromdata collection to visualization to identify useful data from massive data set.the same time,the recent advances of machine learning(ML)and deep learning(DL)models can be utilized for effectual rainfall prediction.With this motivation,this article develops a novel comprehensive oppositionalmoth flame optimization with deep learning for rainfall prediction(COMFO-DLRP)Technique.The proposed CMFO-DLRP model mainly intends to predict the rainfall and thereby determine the environmental changes.Primarily,data pre-processing and correlation matrix(CM)based feature selection processes are carried out.In addition,deep belief network(DBN)model is applied for the effective prediction of rainfall data.Moreover,COMFO algorithm was derived by integrating the concepts of comprehensive oppositional based learning(COBL)with traditional MFO algorithm.Finally,the COMFO algorithm is employed for the optimal hyperparameter selection of the DBN model.For demonstrating the improved outcomes of the COMFO-DLRP approach,a sequence of simulations were carried out and the outcomes are assessed under distinct measures.The simulation outcome highlighted the enhanced outcomes of the COMFO-DLRP method on the other techniques.
基金This research was partly supported by the Technology Development Program of MSS[No.S3033853]by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Statistics are most crucial than ever due to the accessibility of huge counts of data from several domains such as finance,medicine,science,engineering,and so on.Statistical data mining(SDM)is an interdisciplinary domain that examines huge existing databases to discover patterns and connections from the data.It varies in classical statistics on the size of datasets and on the detail that the data could not primarily be gathered based on some experimental strategy but conversely for other resolves.Thus,this paper introduces an effective statistical Data Mining for Intelligent Rainfall Prediction using Slime Mould Optimization with Deep Learning(SDMIRPSMODL)model.In the presented SDMIRP-SMODL model,the feature subset selection process is performed by the SMO algorithm,which in turn minimizes the computation complexity.For rainfall prediction.Convolution neural network with long short-term memory(CNN-LSTM)technique is exploited.At last,this study involves the pelican optimization algorithm(POA)as a hyperparameter optimizer.The experimental evaluation of the SDMIRP-SMODL approach is tested utilizing a rainfall dataset comprising 23682 samples in the negative class and 1865 samples in the positive class.The comparative outcomes reported the supremacy of the SDMIRP-SMODL model compared to existing techniques.
基金supported by the National Natural Science Foundation of China (No. 52174099)the Science and Technology Innovation Program of Hunan Province, China (No. 2023RC3050)。