期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A prediction method of natural gas hydrate formation in deepwater gas well and its application 被引量:5
1
作者 Yanli Guo Baojiang Sun +1 位作者 Keke Zhao Hongkun Zhang 《Petroleum》 2016年第3期296-300,共5页
To prevent the deposition of natural gas hydrate in deepwater gas well,the hydrate formation area in wellbore must be predicted.Herein,by comparing four prediction methods of temperature in pipe with field data and co... To prevent the deposition of natural gas hydrate in deepwater gas well,the hydrate formation area in wellbore must be predicted.Herein,by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data,a method based on OLGA&PVTsim for predicting the hydrate formation area in wellbore was proposed.Meanwhile,The hydrate formation under the conditions of steady production,throttling and shut-in was predicted by using this method based on a well data in the South China Sea.The results indicate that the hydrate formation area decreases with the increase of gas production,inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time.Throttling effect causes a plunge in temperature and pressure in wellbore,thus leading to an increase of hydrate formation area. 展开更多
关键词 deepwater gas well Hydrate prediction Steady production Downhole throttling well shut-in
原文传递
Investment in deepwater oil and gas exploration projects:a multi-factor analysis with a real options model 被引量:5
2
作者 Xin-Hua Qiu Zhen Wang Qing Xue 《Petroleum Science》 SCIE CAS CSCD 2015年第3期525-533,共9页
Deepwater oil and gas projects embody high risks from geology and engineering aspects, which exert substantial influence on project valuation. But the uncer- tainties may be converted to additional value to the projec... Deepwater oil and gas projects embody high risks from geology and engineering aspects, which exert substantial influence on project valuation. But the uncer- tainties may be converted to additional value to the projects in the case of flexible management. Given the flexibility of project management, this paper extends the classical real options model to a multi-factor model which contains oil price, geology, and engineering uncertainties. It then gives an application example of the new model to evaluate deepwater oil and gas projects with a numerical analytical method. Compared with other methods and models, this multi-factor real options model contains more project information. It reflects the potential value deriving not only from oil price variation but also from geology and engi- neering uncertainties, which provides more accurate and reliable valuation information for decision makers. 展开更多
关键词 Investment decision - Real options Multi-factor model Option pricing - deepwater oil and gas
下载PDF
Geochemistry of borehole cutting shale and natural gas accumulation in the deepwater area of the Zhujiang River Mouth-Qiongdongnan Basin in the northern South China Sea 被引量:3
3
作者 GAO Gang ZHANG Gongcheng +3 位作者 CHEN Guo GANG Wenzhe SHEN Huailei ZHAO Ke 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第2期44-53,共10页
The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact... The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S2, oil-base mud has certain impact on Rock-Eval S1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area. 展开更多
关键词 cutting shale organic geochemistry gas accumulation deepwater area Qiongdongnan Basin Zhujiang River Mouth Basin
下载PDF
Modeling underwater transport of oil spilled from deepwater area in the South China Sea 被引量:1
4
作者 陈海波 安伟 +3 位作者 尤云祥 雷方辉 赵宇鹏 李建伟 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2016年第1期245-263,共19页
Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodel... Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill. 展开更多
关键词 underwater oil spill numerical simulation contingency planning deepwater oil/gas field South China Sea
下载PDF
An Experimental Study on the Reinforcement of Weakly-Consolidated Shallow Formation in Deep Water Using an Epoxy Resin-Based Fluid
5
作者 Leiju Tian Yuhuan Bu +1 位作者 Huajie Liu Lingyun Zhao 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1215-1226,共12页
The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–... The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water.This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–formation interface.In this study,a water-borne epoxy resin was applied as a strengthening material to reinforce the weakly consolidated shallow formation and protect the cement sheath from potential failure.The mechanical properties of the unconsolidated clay were tested,including their changes with increases in the temperature and curing time.In addition,the effects of the seawater,cement slurry alkaline filtrate,and saltwater drilling fluid were evaluated.As confirmed by the results,the strengthening fluid was excellent at reinforcing the unconsolidated clay,with a compressive strength of 2.49 MPa(after curing for 7 days),even at a dosage of 5%.A cement slurry filtrate with a high pH was suitable to produce the required strengthening of the formation,especially its early age strength.It should also be pointed out that the used fluid exhibited good compatibility with the saltwater drilling fluid and seawater behaved well as a diluent for the strengthening fluid. 展开更多
关键词 MANUSCRIPT compressive strength deepwater oil and gas well well cementing epoxy resin weakly consolidated shallow formation
下载PDF
Reservoir forming conditions and key exploration technologies of Lingshui 17-2 giant gas field in deepwater area of Qiongdongnan Basin 被引量:5
6
作者 Yuhong Xie Gongcheng Zhang +3 位作者 Zhipeng Sun Qingbo Zeng Zhao Zhao Shuai Guo 《Petroleum Research》 2019年第1期1-18,共18页
On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the fi... On September 15,2014,China National Offshore Oil Co.,Ltd announced that a high production of oil and gas flow of 1.6106 m3/d was obtained in Well LS17-2-1 in deepwater area in northern South China Sea,which is the first great oil and gas discovery for self-run deepwater exploration in China sea areas,and a strategic breakthrough was made in natural gas exploration in deepwater area of Lingshui sag in Qiongdongnan Basin.Under the combined action of climax of international deepwater exploration,high oil prices,national demands of China,practical needs of exploration,breakthroughs in seismic exploration and testing technologies,innovations in geological cognition and breakthroughs in deepwater operation equipment,Lingshui 17-2 gas field is discovered.Among these factors,the innovation in reservoir forming geological cognition directly promotes the discovery.The quality of seismic data in the early time is poor,so key reservoir forming conditions such as effective source rocks,high quality reservoirs and oil-gas migration pathways are unable to be ascertained;with support of new seismic acquisition and processing technology,some researches show that Lingshui sag is a successive large and deep sag with an area of 5000 km2 and the maximum thickness of Cenozoic stratum of 13 km.In the Early Oligocene,the Lingshui sag was a semi-closed delta-estuarine environment,where the coalmeasure and marine mudstones in Lower Oligocene Yacheng Formation were developed.The Lingshui sag is a sag with high temperature,and the bottom temperature of source rocks in Yacheng Formation can exceed 250C,but the simulation experiment of hydrocarbon generation at high temperature indicates that the main part of this set of source rock is still in the gas-generation window,with resources of nearly 1 trillion cubic meters,so the Lingshui sag is a hydrocarbon-rich generation sag.In the Neogene,the axial canyon channel from the Thu Bon River in Vietnam passed through the Lingshui sag,and five stages of secondary channels were developed in the axial canyon channel,where four types of reservoirs with excellent physical properties including the axial sand,lateral accretion sand,natural levee sand as well as erosion residual sand were developed,and lithologic traps or structural-lithologic traps were formed.The diapiric zone in the southern Lingshui sag connects deep source rocks in Yacheng Formation and shallow sandstones in the channels,and the migration pattern of natural gas is a T-type migration pattern,in other words,the natural gas generated from Yacheng Formation migrates vertically to the interior of the channel sandbody,and then migrates laterally in the channel reservoirs and forms the reservoirs.Innovations of geophysical exploration technologies for complicated geological conditions of deepwater areas are made,such as the detuning comprehensive quantitative amplitude hydrocarbon detection technology,which greatly improves the success rate of deepwater exploration;key technologies of deepwater safety exploratory well testing represented by the platform-dragged riser displacement technology are developed,which greatly reduces the drilling test cost.The above key exploration technologies provide a strong guarantee for the efficient exploration and development of Lingshui gas field. 展开更多
关键词 deepwater oil and gas Source rocks Lower limit of gas generation The central canyon Diapiric zone Migration pathway Lingshui sag Lingshui 17-2 giant gas field Qiongdongnan basin
原文传递
CNOOC Discovers Deepwater Gas Field in South China Sea
7
《China Chemical Reporter》 2010年第1期12-12,共1页
China National Offshore Oil Corporation (CNOOC) andHusky Oil China Limited have made a new deepwater gasdiscovery,Liuhua (LH) 34-2,which is the second deepwatergas discovery in the Pearl River Mouth Basin in the easte... China National Offshore Oil Corporation (CNOOC) andHusky Oil China Limited have made a new deepwater gasdiscovery,Liuhua (LH) 34-2,which is the second deepwatergas discovery in the Pearl River Mouth Basin in the easternSouth China Sea following Liwan (LW) 3-1 in this area.CNOOC Limited said on December 9th,2009.The Liuhua 34-2-1 well has ability of producing 55 millioncubic feet of natural gas per day. 展开更多
关键词 LH CNOOC Discovers deepwater gas Field in South China Sea
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部