期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Morphodynamic Characteristics and Medium-Term Simulation of the North-South Passage Under the Impact of the Yangtze Estuary Deepwater Navigation Channel Project 被引量:1
1
作者 JIAO Jian DOU Xi-ping +2 位作者 GAO Xiang-yu DING Lei YANG Xiao-yu 《China Ocean Engineering》 SCIE EI CSCD 2020年第2期198-209,共12页
The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twod... The morphological evolution characteristics of the North-South Passage area since the construction of the Yangtze Estuary Deepwater Navigation Channel Project(DNCP)are analyzed on the basis of the measured data.A twodimensional morphodynamics numerical model of the Yangtze Estuary is established to verify the morphological evolution of the North-South Passage under the influence of the DNCP and to predict the future evolution in the next 40 years.Data analysis shows that the North Passage has experienced rapid adjustment stages and adaptive stages after the construction of the DNCP.Slow erosion occurred along the main channel,and slow siltation could be observed in the area between the groins.The South Passage showed a state of upper section erosion and down section deposition.At present,the whole South Passage is in a slight erosion state.According to the numerical model,the eroding and silting speed of the North Passage will slow down in the future.The present state that erosion occurs in the main channel and siltation occurs between the groins will continue.The South Passage will still maintain upper section erosion and down section deposition in the future.Due to the main channel erosion of the North Passage and siltation of the South Passage,the sediment division ratio of the North Passage will increase in the future but still be smaller than 50%.After morphological evolution of 40 years,the direction of residual sediment transport caused by M2 and M4 tidal components in the North Passage has not changed,but the transport rate will decrease.It is considered that the morphological evolution of the North-South Passage could reach a relatively stable state after 40 years. 展开更多
关键词 Yangtze Estuary numerical model morphology tidal current sediment transport deepwater navigation channel project(DNCP)
下载PDF
Comprehensive analysis on the sediment siltation in the upper reach of the deepwater navigation channel in the Yangtze Estuary 被引量:6
2
作者 匡翠萍 陈维 +1 位作者 顾杰 贺露露 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第2期299-308,共10页
The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estua... The results from both the field measurements and numerical simulation were reported to comprehensively analyze the sediment siltation in the upper reach of the Deepwater Navigation Channel Project in the Yangtze Estuary after the project has been implemented. In this research, firstly some basic information about the river evolution in the Yangtze Estuary is analyzed, including the variations of water depths in the Hengsha Passage and the inlet cross-sections of the North Passage and the South Passage, and changes of diversion ratios of ebb flow and sediment flux in the North Passage and the South Passage, Then the Delfl3D-FLOW model is applied to simulate the hydrodynamics and sediment transport in the Yangtze Estuary. This model has been calibrated and the simulated results agree well with the measured data of the tidal levels, flow velocities and suspended sediment concentration (SSC), indicating that the model can well simulate the hydrodynamics and sediment transport of the Yangtze Estuary caused by the Deepwater Navigation Channel Project. The research results show that the development of the Hengsha Passage and decrease of diversion ratio of ebb flow and sediment flux in the North Passage are the main reasons of sediment siltation in the upper reach of the Deepwater Navigation Channel in the Yangtze Estuary. 展开更多
关键词 Yangtze Estuary Hengsha Passage deepwater navigation channel numerical simulation sediment siltation
原文传递
Dispersal and Fate of Dredged Materials Disposed of in the Changjiang Estuary Determined by Use of An in Situ Rare Earth Element Tracer
3
作者 刘高峰 吴华林 +2 位作者 郭文华 朱建荣 孙连成 《China Ocean Engineering》 SCIE EI 2011年第3期495-506,共12页
To investigate the dispersal pattern and the fate of dredged materials disposed at a pre-selected disposal site, a field tracer experiment was conducted in the North Passage of the Changjiang Estuary during the 2005 f... To investigate the dispersal pattern and the fate of dredged materials disposed at a pre-selected disposal site, a field tracer experiment was conducted in the North Passage of the Changjiang Estuary during the 2005 flood season. Three tons of dredged materials were mixed with 2.792 kg of sodium hexachloroiridate (IV) hexahydrate (SHH), which contained the rare earth element tracer iridum (Ir). Sampling was conducted at pre-selected sections of the estuary on the second, third and fourth day after the release of dredged materials. All samples were evaluated by use of neutron activation analysis. The majority of the dredged material was dispersed nearly parallel to the navigation channel and deposited between the channel and the south dike. Only a small quantity of dredged materials entered or crossed the navigation channel, and the back silting ratio in the navigation channel was about 5%. The dredged materials also dispersed southeasterly beyond two dike heads. 展开更多
关键词 dredged material tracer sediment transport Neutron activation analysis deepwater navigation channel of the Changjiang Estuary
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部