期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unveiling the surface-interface properties of perovskite crystals and pivotal regulation strategies 被引量:1
1
作者 Qin Li Ziyu Wang +6 位作者 Junjie Ma Mengqi Han Peng Gao Meng Cai Yiqiang Zhang Yanlin Song Shou Peng 《Nano Research》 SCIE EI CSCD 2024年第5期3950-3981,共32页
Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization.Despite achieving remarkable po... Metal-halide perovskite solar cells have garnered significant research attention in the last decade due to their exceptional photovoltaic performance and potential for commercialization.Despite achieving remarkable power conversion efficiency of up to 26.1%,a substantial discrepancy persists when compared to the theoretical Shockley-Queisser(SQ)limit.One of the most serious challenges facing perovskite solar cells is the energy loss incurred during photovoltaic conversion,which affects the SQ limits and stability of the device.More significant than the energy loss occurring in the bulk phase of the perovskite is the energy loss occurring at the surface-interface.Here,we provide a systematic overview of the physical and chemical properties of the surface-interface.Firstly,we delve into the underlying mechanism causing the energy deficit and structural degradation at the surface-interface,aiming to enhance the understanding of carrier transport processes and structural chemical reactivity.Furthermore,we systematically summarized the primary modulating pathways,including surface reconstruction,dimensional construction,and electric-field regulation.Finally,we propose directions for future research to advance the efficiency of perovskite solar cells towards the radiative limit and their widespread commercial application. 展开更多
关键词 perovskite solar cells surface-interface treatment defect modification dimensional design energy regulation heterojunction and homojunction
原文传递
Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO_3 catalysts for VOCs combustion 被引量:11
2
作者 Lei Deng Chao Huang +4 位作者 Jiawei Kan Bing Li Yingwen Chen Shemin Zhu Shubao Shen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第3期265-272,共8页
NiMnO3 perovskite catalysts supported on cordierite modified by CexZr(1-x)O2 coatings were prepared using impregnation and sol-gel methods for catalytic combustion of single/double component VOCs at different concen... NiMnO3 perovskite catalysts supported on cordierite modified by CexZr(1-x)O2 coatings were prepared using impregnation and sol-gel methods for catalytic combustion of single/double component VOCs at different concentrations and GHSV of 15,000 h^(-1), which were characterized by BET, XRD, SEM, FT-IR, H2-TPR and O2-TPD. After coating modification, the specific surface area of catalysts is improved obviously.Among the catalysts, the Ce(0.75)Zr(0.25)O2 coating modified NiMnO3 catalyst exhibits the best catalytic activity for VOCs combustion with 95.6% conversion at 275 ℃ and has stable activity when catalyst is embalmed at 800 ℃. In addition, the catalyst also presents the excellent water-resistant and conversion stability over time-on-stream condition. The reason is that Ce(0.75)Zr(0.25)O2 coating can promote more lattice distortion and defects and smaller crystal size, which improve oxygen transfer capability and dispersion of active component. 展开更多
关键词 Catalytic combustion VOCs Coating modification NiMnO3 catalyst lattice distortion and defects Oxygen transfer capability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部