期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Histological observation on acellular nerve grafts co-cultured with Schwann cells for repairing defects of the sciatic nerve 被引量:1
1
作者 Xiaohong Sun Jiangyi Tian +2 位作者 Xiaojie Tong Xu Zhang Zheng He 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期44-46,共3页
BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve... BACKGROUND: Animal experiments and clinical studies about tissue engineering method applied to repair nerve injury mainly focus on seeking ideal artificial nerve grafts, nerve conduit and seed cells. Autologous nerve, allogeneic nerve and xenogeneic nerve are used to bridge nerve defects, it is one of the methods to promote the repair of nerve injury by culturing and growing Schwann cells, which can secrete various neurotrophic factor activities, in the grafts. OBJECTIVE : To observe the effect of acellular nerve grafts co-cultured with Schwann cells in repairing defects of sciatic nerve. DESIGN: An observational comparative study.SETTING: Tissue Engineering Laboratory of China Medical University.MATERIALS: The experiment was carried out in the Tissue Engineering Laboratory of China Medical University between April 2004 and April 2005. Forty neonatal Sprague-Dawley rats of 5-8 days (either males or females) and 24 male Wistar rats of 180-220 g were provided by the experimental animal center of China Medical University. METHODS: ① Culture of Schwann cells: The bilateral sciatic nerves and branchial plexus were isolated from the 40 neonatal SD rats. The sciatic nerves were enzymatically digested with collagenase and dispase, isolatd, purified and cultured with the method of speed-difference adhersion, and identified with the SABC immunohistochemical method. ② Model establishment: In vitro Schwann cells were microinjected into 10-mm long acellular nerve grafts repairing a surgically created gap in the rat sciatic nerve. According to the different grafted methods, the animals were randomly divided into three groups: autografts (n=8), acellular nerve grafts (n=8), or acellular nerve grafts with Schwann cells (n=8). ③ The regenerated nerve fiber number and average diameter of myeline sheath after culture were statistically anlayzed. MAIN OUTCOME MEASURES: ① The regenerated nerve ultrastructure, total number and density of myelinated nerve fibers, and the thickness of myeline sheath were observed under electron microscope. ② The images were processed with the Mias-1000 imaging analytical system to calculate the number of myelinated nerve fibers, and the thickness of myeline sheath. RESULTS: All the 24 Wistar rats were involved in the analysis of results. ① Results observed under transmission electron microscope: The regenerated myelinated nerve fibers in the group of acellular nerve grafts with Schwann cells were more even than those in the group of acellular nerve grafts, the number of myelinated nerve fibers and thickness of myelin sheath were close to those in the allografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05). ② Results observed under scanning electron microscope: A great amount of Schwann cells with two polars were observed in the group of grafts with Schwann cells, the feature of cultured Schwann cells showed shoulder by shoulder, head to head. ③ The number of myelinated nerve fibers and thickness of myelin sheath analyzed by Mias-1000 imaging system in the group of acellular nerve grafts with Schwann cells were close to those in the autografts group (P 〉 0.05), but significantly different from those in the group of acellular nerve grafts (P 〈 0.05).CONCLUSION: Host axonal regeneration is significantly increased after implant of acellular nerve grafts. Acellular nerve grafts with Schwann cells offers a novel approach for repairing the gap of nerve defect. 展开更多
关键词 Histological observation on acellular nerve grafts co-cultured with Schwann cells for repairing defects of the sciatic nerve
下载PDF
Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle Cells for Triple-Junction Solar Cells
2
作者 郑勇 易天成 +2 位作者 肖鹏飞 唐娟 王荣 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期67-70,共4页
Photolumineseenee measurements are carried out to investigate the injection-enhanced annealing behavior of electron radiation-induced defects in a GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells which a... Photolumineseenee measurements are carried out to investigate the injection-enhanced annealing behavior of electron radiation-induced defects in a GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells which are irradiated by 1.8 MeV with a fluence of i ~ 1015 cm-2. Minority-carrier injection under forward bias is observed to enhance the defect annealing in the GaAs middle cell, and the removal rate of the defect is determined with photoluminescenee radiative efficiency recovery. Furthermore, the injection-enhanced defect removal rates obey a simple Arrhenius law. Therefore, the annealing activation energy is acquired and is equal to 0.58eV. Finally, in comparison of the annealing activation energies, the E5 defect is identified as a primary non-radiative recombination center. 展开更多
关键词 GAAS on cell of Photoluminescence Analysis of Injection-Enhanced Annealing of Electron Irradiation-Induced Defects in GaAs Middle cells for Triple-Junction Solar cells in for is
下载PDF
Biodegradable Thermogel as Culture Matrix of Bone Marrow Mesenchymal Stem Cells for Potential Cartilage Tissue Engineering 被引量:3
3
作者 Yan-bo Zhang 丁建勋 +5 位作者 Wei-guo Xu Jie Wu 常非 Xiu-li Zhuang Xue-si Chen 王金成 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第12期1590-1601,共12页
Poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer was synthesized through the ring-opening polymerization of LA and GA with PEG as macroinitiator and... Poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer was synthesized through the ring-opening polymerization of LA and GA with PEG as macroinitiator and stannous octoate as catalyst. The amphiphilic copolymer self-assembled into micelles in aqueous solutions, and formed hydrogels as the increase of temperature at relatively high concentrations(〉 15 wt%). The favorable degradability of the hydrogel was confirmed by in vitro and in vivo degradation experiments. The good cellular and tissular compatibilities of the thermogel were demonstrated. The excellent adhesion and proliferation of bone marrow mesenchymal stem cells endowed PLGA-PEGPLGA thermogelling hydrogel with fascinating prospect for cartilage tissue engineering. 展开更多
关键词 Bone marrow mesenchymal stem cell Cartilage defect repair Scaffold Thermogel.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部