期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:2
1
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
2
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection 被引量:1
3
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
Strip steel surface defect detection algorithm based on improved Faster R-CNN 被引量:1
4
作者 齐继阳 吴宇帆 《China Welding》 CAS 2024年第2期11-22,共12页
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ... To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value. 展开更多
关键词 defect detection RC-Swin Transformer CBAM-BiFPN RoI align Soft NMS
下载PDF
Semi-supervised surface defect detection of wind turbine blades with YOLOv4
5
作者 Chao Huang Minghui Chen Long Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期284-292,共9页
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ... Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR. 展开更多
关键词 Defect detection Generative adversarial network scSE attention Semi-supervision Wind turbine
下载PDF
Industry-Oriented Detection Method of PCBA Defects Using Semantic Segmentation Models
6
作者 Yang Li Xiao Wang +10 位作者 Zhifan He Ze Wang Ke Cheng Sanchuan Ding Yijing Fan Xiaotao Li Yawen Niu Shanpeng Xiao Zhenqi Hao Bin Gao Huaqiang Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1438-1446,共9页
Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including lo... Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements. 展开更多
关键词 Automated optical inspection(AOI) deep learning defect detection printed circuit board assembly(PCBA) semantic segmentation.
下载PDF
SDH-FCOS:An Efficient Neural Network for Defect Detection in Urban Underground Pipelines
7
作者 Bin Zhou Bo Li +2 位作者 Wenfei Lan Congwen Tian Wei Yao 《Computers, Materials & Continua》 SCIE EI 2024年第1期633-652,共20页
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect... Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model. 展开更多
关键词 Urban underground pipelines defect detection SDH-FCOS feature fusion SPPF dual detection heads
下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
8
作者 Zifeng Yu Xianfeng Li +2 位作者 Lianpeng Sun Jinjun Zhu Jianxin Lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
下载PDF
YOLO-RLC:An Advanced Target-Detection Algorithm for Surface Defects of Printed Circuit Boards Based on YOLOv5
9
作者 Yuanyuan Wang Jialong Huang +4 位作者 Md Sharid Kayes Dipu Hu Zhao Shangbing Gao Haiyan Zhang Pinrong Lv 《Computers, Materials & Continua》 SCIE EI 2024年第9期4973-4995,共23页
Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.There... Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection. 展开更多
关键词 Deep learning PCB defect detection large kernel noise filtering weighted fusion YOLO
下载PDF
Printed Circuit Board (PCB) Surface Micro Defect Detection Model Based on Residual Network with Novel Attention Mechanism
10
作者 Xinyu Hu Defeng Kong +2 位作者 Xiyang Liu Junwei Zhang Daode Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期915-933,共19页
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o... Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images. 展开更多
关键词 Neural networks deep learning ResNet small object feature extraction PCB surface defect detection
下载PDF
A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects
11
作者 Xiao Lu Chengling Jiang +2 位作者 Zhoujun Ma Haitao Li Yuexin Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期373-390,共18页
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable... Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects. 展开更多
关键词 Insulator defect detection small object power line deformable attention mechanism
下载PDF
A Rapid Crack Detection Technique Based on Attention for Intelligent M&O of Cross-Sea Bridge
12
作者 ZHOU Yong-chuan LI Guang-jun +2 位作者 WEI Wei WANG Ya-meng JING Qiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期866-876,共11页
Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection ac... Rapid and accurate segmentation of structural cracks is essential for ensuring the quality and safety of engineering projects.In practice,however,this task faces the challenge of finding a balance between detection accuracy and efficiency.To alleviate this problem,a lightweight and efficient real-time crack segmentation framework was developed.Specifically,in the network model system based on an encoding-decoding structure,the encoding network is equipped with packet convolution and attention mechanisms to capture features of different visual scales in layers,and in the decoding process,we also introduce a fusion module based on spatial attention to effectively aggregate these hierarchical features.Codecs are connected by pyramid pooling model(PPM)filtering.The results show that the crack segmentation accuracy and real-time operation capability larger than 76%and 15 fps,respectively,are validated by three publicly available datasets.These wide-ranging results highlight the potential of the model for the intelligent O&M for cross-sea bridge. 展开更多
关键词 bridge defect detection crack detection lightweight design
下载PDF
Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+Deep Learning Model
13
作者 Wanrun Li Wenhai Zhao +1 位作者 Tongtong Wang Yongfeng Du 《Structural Durability & Health Monitoring》 EI 2024年第5期553-575,共23页
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ... The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades. 展开更多
关键词 Structural health monitoring computer vision blade surface defects detection Deeplabv3+ deep learning model
下载PDF
An Efficient YOLOX-Based Method for Photovoltaic Cell Defect Detection
14
作者 Junjie Wang Li Bi +1 位作者 Xunde Ma Pengxiang Sun 《Instrumentation》 2024年第2期83-94,共12页
Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complica... Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complicate the detection task.Therefore,this paper employs the YOLOX model as the backbone network structure and optimizes various modules to address these issues.First,we adopt a transfer learning strategy to accelerate model convergence and avoid insufficient accuracy due to the limited number of defect samples.Second,we introduce the SENet module into the feature extraction process to enhance the contrast between defects and their background.Then,we incorporate the ASFF strategy at the end of the PAFPN network to adaptively learn and emphasize both high-and low-level semantic features of defects.Furthermore,model accuracy is enhanced by refining the loss functions for positioning,classification,and confidence.Finally,the proposed method achieved excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset(PVEL-AD),with a mAP of 96.7%and a detection speed of 71.47FPS.Specifically,the detection of small target defects showed significant improvement. 展开更多
关键词 photovoltaic cell defect detection deep learning YOLOX ELECTROLUMINESCENCE
下载PDF
Wood defect detection method with PCA feature fusion and compressed sensing 被引量:18
15
作者 Yizhuo Zhang Chao Xu +2 位作者 Chao Li Huiling Yu Jun Cao 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期745-751,共7页
We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as ... We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %. 展开更多
关键词 Principal component analysis Compressedsensing Wood board classification Defect detection
下载PDF
Simulation Analysis and Experimental Study of Defect Detection Underwater by ACFM Probe 被引量:9
16
作者 李伟 陈国明 +1 位作者 张传荣 刘涛 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期277-282,共6页
This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect... This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system. 展开更多
关键词 ACFM underwater structure defect detection simulation analysis experimental study
下载PDF
Background removal and weld defect detection based on energy distribution of image 被引量:13
17
作者 迟大钊 刚铁 高双胜 《China Welding》 EI CAS 2007年第1期14-18,共5页
The lateral wave in ultrasonic TOFD (time of flight diffraction) image has a tail in transit time, which disturbs the detection and evaluation of shallow weld defect. Meanwhile, the lateral wave and back-wall echo t... The lateral wave in ultrasonic TOFD (time of flight diffraction) image has a tail in transit time, which disturbs the detection and evaluation of shallow weld defect. Meanwhile, the lateral wave and back-wall echo that act as background add redundant data in digital image processing. In order to separate defect wave from lateral wave and prepare the way for following image processing, an algorithm of background removal method named as mean-subtraction is developed. Based on this, an improved method by statistic of the energy distribution in the image is proposed. The results show that by choosing proper threshold value according to the axial energy distribution of the image, the background can be removed automatically and the defect section becomes predominant. Meanwhile, diffractive wave of shallow weld defect can be separated from lateral wave effectively. 展开更多
关键词 time of flight diffraction (TOFD) digital image processing background removal defect detection
下载PDF
Algorithmic Scheme for Concurrent Detection and Classification of Printed Circuit Board Defects 被引量:7
18
作者 Jakkrit Onshaunjit Jakkree Srinonchat 《Computers, Materials & Continua》 SCIE EI 2022年第4期355-367,共13页
An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This ... An ideal printed circuit board(PCB)defect inspection system can detect defects and classify PCB defect types.Existing defect inspection technologies can identify defects but fail to classify all PCB defect types.This research thus proposes an algorithmic scheme that can detect and categorize all 14-known PCB defect types.In the proposed algorithmic scheme,fuzzy cmeans clustering is used for image segmentation via image subtraction prior to defect detection.Arithmetic and logic operations,the circle hough transform(CHT),morphological reconstruction(MR),and connected component labeling(CCL)are used in defect classification.The algorithmic scheme achieves 100%defect detection and 99.05%defect classification accuracies.The novelty of this research lies in the concurrent use of CHT,MR,and CCL algorithms to accurately detect and classify all 14-known PCB defect types and determine the defect characteristics such as the location,area,and nature of defects.This information is helpful in electronic parts manufacturing for finding the root causes of PCB defects and appropriately adjusting the manufacturing process.Moreover,the algorithmic scheme can be integrated into machine vision to streamline the manufacturing process,improve the PCB quality,and lower the production cost. 展开更多
关键词 PCB inspection PCB defect types defect detection defect classification image processing
下载PDF
A method for workpiece surface small-defect detection based on CutMix and YOLOv3 被引量:7
19
作者 Xing Junjie Jia Minping +1 位作者 Xu Feiyun Hu Jianzhong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期128-136,共9页
Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a proble... Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a problem.First,a four-image CutMix method is used to increase the small-defect quantity,and the process is dynamically adjusted based on the beta distribution.Then,the classic YOLOv3 is improved to detect small defects accurately.The shallow and large feature maps are split,and several of them are merged with the feature maps of the predicted branch to preserve the shallow features.The loss function of YOLOv3 is optimized and weighted to improve the attention to small defects.Finally,this method is used to detect 512×512 pixel images under RTX 2060Ti GPU,which can reach the speed of 14.09 frame/s,and the mAP is 71.80%,which is 5%-10%higher than that of other methods.For small defects below 64×64 pixels,the mAP of the method reaches 64.15%,which is 14%higher than that of YOLOv3-GIoU.The surface defects of the workpiece can be effectively detected by the proposed method,and the performance in detecting small defects is significantly improved. 展开更多
关键词 machine vision image recognition deep convolutional neural network defect detection
下载PDF
Detection of surface cutting defect on magnet using Fourier image reconstruction 被引量:3
20
作者 王福亮 左博 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1123-1131,共9页
A magnet is an important component of a speaker,as it makes the coil move back forth,and it is commonly used in mobile information terminals.Defects may appear on the surface of the magnet while cutting it into smalle... A magnet is an important component of a speaker,as it makes the coil move back forth,and it is commonly used in mobile information terminals.Defects may appear on the surface of the magnet while cutting it into smaller slices,and hence,automatic detection of surface cutting defect detection becomes an important task for magnet production.In this work,an image-based detection system for magnet surface defect was constructed,a Fourier image reconstruction based on the magnet surface image processing method was proposed.The Fourier transform was used to get the spectrum image of the magnet image,and the defect was shown as a bright line in it.The Hough transform was used to detect the angle of the bright line,and this line was removed to eliminate the defect from the original gray image;then the inverse Fourier transform was applied to get the background gray image.The defect region was obtained by evaluating the gray-level differences between the original image and the background gray image.Further,the effects of several parameters in this method were studied and the optimized values were obtained.Experiment results show that the proposed method can detect surface cutting defects in a magnet automatically and efficiently. 展开更多
关键词 defect detection image process MAGNET Fourier transform
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部