Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control th...Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application.展开更多
In this work,we developed a simple strategy to synthesize a carbon material with high nitrogen and rich carbon defects.Our approach polymerized diaminopyridine(DAP) and ammonium persulfate(APS).Following a range of di...In this work,we developed a simple strategy to synthesize a carbon material with high nitrogen and rich carbon defects.Our approach polymerized diaminopyridine(DAP) and ammonium persulfate(APS).Following a range of different temperature pyrolysis approaches,the resulting rough surface was shown to exhibit edge defects due to N-doping on graphite carbon.A series of catalysts were evaluated using a variety of characterization techniques and tested for catalytic performance.The catalytic performance of the N-doped carbon material enhanced alongside an increment in carbon defects.The NC-800 catalyst exhibited outstanding catalytic activity and stability in acetylene hydrochlorination(C_(2) H_(2) GHSV=30 h^(-1),at 220℃,the acetylene conversion rate was 98%),with its stability reaching up to 450 h.Due to NC-800 having a nitrogen content of up to 13.46%,it had the largest specific surface area and a high defect amount,as well as strong C_(2) H_(2) and HCl adsorption.NC-800 has excellent catalytic activity and stability to reflect its unlimited potential as a carbon material.展开更多
The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopo...The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.展开更多
Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In t...Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.展开更多
For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yie...For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yield loss caused by redundancy material defects, the choice of nets to be optimized at first is an important step in the process of layout optimization. This paper provides a new sensitivity model for a short net, which is net-based and reflects the size of the critical area between a single net and the nets around it. Since this model is based on a single net and includes the information of the surrounding nets, the critical area between the single net and surrounding nets can be reduced at the same time. In this way, the efficiency of layout optimization becomes higher. According to experimental observations~ this sensitivity model can be used to choose the position for optimization. Compared with the chip-area-based and basic- layout-based sensitivity models, our sensitivity model not only has higher efficiency, but also confirms that choosing the net to be optimized at first improves the design.展开更多
As the technology scales advancing into the nanometer region,the concept of yield has become an increasingly important design metric.To reduce the yield loss caused by local defects,layout optimization can play a crit...As the technology scales advancing into the nanometer region,the concept of yield has become an increasingly important design metric.To reduce the yield loss caused by local defects,layout optimization can play a critical role.In this paper,we propose a new open sensitivity-based model with consideration of the blank space around the net,and study the corresponding net optimization.The proposed new model not only has a high practicability in the selection of nets to be optimized but also solves the issue of the increase in short critical area brought during the open optimization,which means to reduce the open critical area with no new short critical area produced,and thereby this model can ensure the decrease of total critical area and finally achieves an integrative optimization.Compared with the models available,the experimental results show that our sensitivity model not only consumes less time with concise algorithm but also can deal with irregular layout,which is out of the scope of other models.At the end of this paper,the effectiveness of the new model is verified by the experiment on the randomly selected five metal layers from the synthesized OpenSparc circuit layout.展开更多
Doping in pristine 2 D materials brings about the advantage of modulating wide range of mechanical properties simultaneously.However,intrinsic defects(such as Stone-Wales and nanopore) in such hybrid materials are ine...Doping in pristine 2 D materials brings about the advantage of modulating wide range of mechanical properties simultaneously.However,intrinsic defects(such as Stone-Wales and nanopore) in such hybrid materials are inevitable due to complex manu facturing and synthesis processes.Besides that,de fects and irregularities can be intentionally induced in a pristine nanostructure for multi-synchronous modulation of various multi-functional properties.Whatever the case may be,in order to realistically analyse a doped graphene sheet,it is of utmost importance to investigate the compound effect of doping and defects in such 2 D monolayers.Here we present a molecular dynamics based investigation for probing mechanical properties(such as Young’s modulus,post-elastic behaviour,failure strength and strain)of doped graphene(C14 and Si) coupling the effect of inevitable defects.Spatial sensitivity of defect and doping are systematically analyzed considering different rational instances.The study reveals the effects of individual defects and doping along with their possible compounded influences on the failure stress,failure strain,Young’s modulus and constitutive relations beyond the elastic regime.Such detailed mechanical characterization under the practically relevant compound effects would allow us to access the viability of adopting doped graphene in various multifunctional nanoelectromechanical devices and systems in a realistic situation.展开更多
A Yb_(0.11)Gd_(0.89)Ca_4O(BO_3)_3 crystal with new composition was grown by the Czochralski method. The crystal structure was measured and analyzed. The unit-cell parameters of the Yb_(0.11)Gd_(0.89)COB were...A Yb_(0.11)Gd_(0.89)Ca_4O(BO_3)_3 crystal with new composition was grown by the Czochralski method. The crystal structure was measured and analyzed. The unit-cell parameters of the Yb_(0.11)Gd_(0.89)COB were calculated to be a=0.8089(7) nm, b=1.5987(6) nm, c=0.3545(8) nm, β=101.22o. The absorption and fluorescence spectra were measured. The maximum absorption cross-section of Yb_(0.11)Gd_(0.89) COB crystal was 0.79×10^(–20)cm^2, which occurred at 976 nm with Y polarization. The emission cross-section at 1027 nm was calculated to be 0.33×10^(–20) cm^2. The radiative lifetime trad was calculated to be 2.74 ms. The Stark energy-level diagram of Yb^(3+)in the Yb_(0.11)Gd_(0.89)COB crystal field at room temperature was determined. The ground-state energy level ~2F_(7/2) splitting was calculated to be as large as 1004 cm^(–1) and the zero-line energy was 10246 cm^(–1). A maximum output power of 9.35 W was achieved in continuous-wave(CW) mode, with the slope efficiency being 42.1%. Chemical etching experiment revealed that the dominating imperfections in the studied Yb_(0.11)Gd_(0.89) COB crystal were dislocations and sub-grain boundaries. The existence of crystal defects could cause light scattering, and degrade laser output efficiency. The influence of crystal defects on laser properties was discussed.展开更多
基金The Beijing Municipal Education Commission(KZ201910005003)supported this work。
文摘Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application.
基金supported by the National Natural Science Foundation of China (21666033)the State Key Research and Development Project of China (2016YFB0301603)International Corporation of S&T Project in Xinjiang Production and Construction Corps (2018BC003)。
文摘In this work,we developed a simple strategy to synthesize a carbon material with high nitrogen and rich carbon defects.Our approach polymerized diaminopyridine(DAP) and ammonium persulfate(APS).Following a range of different temperature pyrolysis approaches,the resulting rough surface was shown to exhibit edge defects due to N-doping on graphite carbon.A series of catalysts were evaluated using a variety of characterization techniques and tested for catalytic performance.The catalytic performance of the N-doped carbon material enhanced alongside an increment in carbon defects.The NC-800 catalyst exhibited outstanding catalytic activity and stability in acetylene hydrochlorination(C_(2) H_(2) GHSV=30 h^(-1),at 220℃,the acetylene conversion rate was 98%),with its stability reaching up to 450 h.Due to NC-800 having a nitrogen content of up to 13.46%,it had the largest specific surface area and a high defect amount,as well as strong C_(2) H_(2) and HCl adsorption.NC-800 has excellent catalytic activity and stability to reflect its unlimited potential as a carbon material.
文摘The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.
基金supported by the National Natural Science Foundation of China(11222217)the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics(MCMS-0414G01)
文摘Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum- mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173088 and 61070143)the Programme of Introducing Talents of Discipline to Universities (Grant No. B08038)
文摘For modern processes at deep sub-micron technology nodes, yield design, especially the design at the layout stage is an important way to deal with the problem of manufacturability and yield. In order to reduce the yield loss caused by redundancy material defects, the choice of nets to be optimized at first is an important step in the process of layout optimization. This paper provides a new sensitivity model for a short net, which is net-based and reflects the size of the critical area between a single net and the nets around it. Since this model is based on a single net and includes the information of the surrounding nets, the critical area between the single net and surrounding nets can be reduced at the same time. In this way, the efficiency of layout optimization becomes higher. According to experimental observations~ this sensitivity model can be used to choose the position for optimization. Compared with the chip-area-based and basic- layout-based sensitivity models, our sensitivity model not only has higher efficiency, but also confirms that choosing the net to be optimized at first improves the design.
基金Project supported in part by the National Natural Science Foundation of China(No.61173088)the Science & Technology Program of Xi’an,China(No.CX12485)the 111 Project(No.B08038)
文摘As the technology scales advancing into the nanometer region,the concept of yield has become an increasingly important design metric.To reduce the yield loss caused by local defects,layout optimization can play a critical role.In this paper,we propose a new open sensitivity-based model with consideration of the blank space around the net,and study the corresponding net optimization.The proposed new model not only has a high practicability in the selection of nets to be optimized but also solves the issue of the increase in short critical area brought during the open optimization,which means to reduce the open critical area with no new short critical area produced,and thereby this model can ensure the decrease of total critical area and finally achieves an integrative optimization.Compared with the models available,the experimental results show that our sensitivity model not only consumes less time with concise algorithm but also can deal with irregular layout,which is out of the scope of other models.At the end of this paper,the effectiveness of the new model is verified by the experiment on the randomly selected five metal layers from the synthesized OpenSparc circuit layout.
基金the financial support received from Ministry of Human Resource and Development (MHRD), Govt. of India during the period of this research workenhanced financial support from IIT Kanpur during this research。
文摘Doping in pristine 2 D materials brings about the advantage of modulating wide range of mechanical properties simultaneously.However,intrinsic defects(such as Stone-Wales and nanopore) in such hybrid materials are inevitable due to complex manu facturing and synthesis processes.Besides that,de fects and irregularities can be intentionally induced in a pristine nanostructure for multi-synchronous modulation of various multi-functional properties.Whatever the case may be,in order to realistically analyse a doped graphene sheet,it is of utmost importance to investigate the compound effect of doping and defects in such 2 D monolayers.Here we present a molecular dynamics based investigation for probing mechanical properties(such as Young’s modulus,post-elastic behaviour,failure strength and strain)of doped graphene(C14 and Si) coupling the effect of inevitable defects.Spatial sensitivity of defect and doping are systematically analyzed considering different rational instances.The study reveals the effects of individual defects and doping along with their possible compounded influences on the failure stress,failure strain,Young’s modulus and constitutive relations beyond the elastic regime.Such detailed mechanical characterization under the practically relevant compound effects would allow us to access the viability of adopting doped graphene in various multifunctional nanoelectromechanical devices and systems in a realistic situation.
基金Project supported by National Natural Science Foundation of China(11204148,11374170)Taishan Scholar Program of Shandong Province+2 种基金Open Project of State Key Laboratory of Rare Earth Resource Utilization(RERU2016015)the Applied Basic Research Programs for Youths of Qingdao(15-9-1-52-JCH)Qingdao Postdoctoral Application Research Project(2015127)
文摘A Yb_(0.11)Gd_(0.89)Ca_4O(BO_3)_3 crystal with new composition was grown by the Czochralski method. The crystal structure was measured and analyzed. The unit-cell parameters of the Yb_(0.11)Gd_(0.89)COB were calculated to be a=0.8089(7) nm, b=1.5987(6) nm, c=0.3545(8) nm, β=101.22o. The absorption and fluorescence spectra were measured. The maximum absorption cross-section of Yb_(0.11)Gd_(0.89) COB crystal was 0.79×10^(–20)cm^2, which occurred at 976 nm with Y polarization. The emission cross-section at 1027 nm was calculated to be 0.33×10^(–20) cm^2. The radiative lifetime trad was calculated to be 2.74 ms. The Stark energy-level diagram of Yb^(3+)in the Yb_(0.11)Gd_(0.89)COB crystal field at room temperature was determined. The ground-state energy level ~2F_(7/2) splitting was calculated to be as large as 1004 cm^(–1) and the zero-line energy was 10246 cm^(–1). A maximum output power of 9.35 W was achieved in continuous-wave(CW) mode, with the slope efficiency being 42.1%. Chemical etching experiment revealed that the dominating imperfections in the studied Yb_(0.11)Gd_(0.89) COB crystal were dislocations and sub-grain boundaries. The existence of crystal defects could cause light scattering, and degrade laser output efficiency. The influence of crystal defects on laser properties was discussed.