Objective To screen and identify genetic loci affecting the active zone formation in C. elegans. Methods A SYD-2::GFP reporter was constructed and used as an active zone marker for forward genetic screen to identify...Objective To screen and identify genetic loci affecting the active zone formation in C. elegans. Methods A SYD-2::GFP reporter was constructed and used as an active zone marker for forward genetic screen to identify genetic loci affecting the active zone formation. Results Eight isolated mutant alleles were characterized from 15,000 haploid genomes. The SYD-2::GFP phenotypes of these mutants are mainly reflected as the changes of number, morphology, distribution of puncta and the gaps appearance. Some mutants also exhibit visible behavioral or physical phenotypes, and aldicarb resistant or sensitive phenotypes. Conclusion These mutants provide the opportunity for further systematic research on the active zone formation and the neurotransmission.展开更多
RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)...RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)proteins. Here, we report the map-based cloning and molecular characterization of a defective kernel mutant dek39 in maize. Loss of Dek39 function leads to delayed embryogenesis and endosperm development, reduced kernel size, and seedling lethality. Dek39 encodes an E subclass PPR protein that targets to both mitochondria and chloroplasts, and is involved in RNA editing in mitochondrial NADH dehydrogenase3(nad3) at nad3-247 and nad3-275. C-to-U editing of nad3-275 is not conserved and even lost in Arabidopsis, consistent with the idea that no close DEK39 homologs are present in Arabidopsis. However, the amino acids generated by editing nad3-247 and nad3-275 are highly conserved in many other plant species, and the reductions of editing at these two sites decrease the activity of mitochondria NADH dehydrogenase complex I,indicating that the alteration of amino acid sequence is necessary for Nad3 function. Our results indicate that Dek39 encodes an E sub-class PPR protein that is involved in RNA editing of multiple sites and is necessary for seed development of maize.展开更多
文摘Objective To screen and identify genetic loci affecting the active zone formation in C. elegans. Methods A SYD-2::GFP reporter was constructed and used as an active zone marker for forward genetic screen to identify genetic loci affecting the active zone formation. Results Eight isolated mutant alleles were characterized from 15,000 haploid genomes. The SYD-2::GFP phenotypes of these mutants are mainly reflected as the changes of number, morphology, distribution of puncta and the gaps appearance. Some mutants also exhibit visible behavioral or physical phenotypes, and aldicarb resistant or sensitive phenotypes. Conclusion These mutants provide the opportunity for further systematic research on the active zone formation and the neurotransmission.
基金supported by the National Natural Science Foundation of China (91435206 31421005)+1 种基金National Key Technologies Research & Development ProgramSeven Major Crops Breeding Project (2016YFD0101803, 2016YFD0100404)the 948 project (2016-X33)
文摘RNA editing is a posttranscriptional process that is important in mitochondria and plastids of higher plants. All RNA editing-specific trans-factors reported so far belong to PLS-class of pentatricopeptide repeat(PPR)proteins. Here, we report the map-based cloning and molecular characterization of a defective kernel mutant dek39 in maize. Loss of Dek39 function leads to delayed embryogenesis and endosperm development, reduced kernel size, and seedling lethality. Dek39 encodes an E subclass PPR protein that targets to both mitochondria and chloroplasts, and is involved in RNA editing in mitochondrial NADH dehydrogenase3(nad3) at nad3-247 and nad3-275. C-to-U editing of nad3-275 is not conserved and even lost in Arabidopsis, consistent with the idea that no close DEK39 homologs are present in Arabidopsis. However, the amino acids generated by editing nad3-247 and nad3-275 are highly conserved in many other plant species, and the reductions of editing at these two sites decrease the activity of mitochondria NADH dehydrogenase complex I,indicating that the alteration of amino acid sequence is necessary for Nad3 function. Our results indicate that Dek39 encodes an E sub-class PPR protein that is involved in RNA editing of multiple sites and is necessary for seed development of maize.