期刊文献+
共找到67,126篇文章
< 1 2 250 >
每页显示 20 50 100
Correlation between types of defects/vacancies of Bi2S3 nanostructures and their transient photocurrent
1
作者 Mingyang Liu Luqing Wang +8 位作者 Pei Dong Liangliang Dong Xifan Wang Jarin Joyner Xiangjian Wan Boris I. Yakobson Robert Vajtai Pulickel Ajayan PolSpanos 《Nano Research》 SCIE EI CAS CSCD 2017年第7期2405-2414,共10页
Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; t... Crystalline nanostructures possess defects/vacancies that affect their physical and chemical properties. In this regard, the electronic structure of materials can be effectively regulated through defect engineering; therefore, the correlation between defects/vacancies and the properties of a material has attracted extensive attention. Here, we report the synthesis of Bi2S3 microspheres by nanorod assemblies with exposed {211} facets, and the investigation of the types and concentrations of defects/vacancies by means of positron annihilation spectrometry. Our studies revealed that an increase in the calcined temperature, from 350 to 400 ℃, led the predominant defect/vacancy densities to change from isolated bismuth vacancies (VBi) to septuple Bi3+-sulfur vacancy associates (VBiBiBiSSSS). Furthermore, the concentration of septuple BiB+-sulfur vacancy associates increased as the calcined temperature was increased from 400 to 450 ℃. The characterized transient photocurrent spectrum demonstrates that the photocurrent values closely correlate with the types and concentrations of the predominant defects/vacancies. Our theoretical computation, through first principles, showed that VBiBiBiSSSS strongly absorbs I2(sol), easily desorbs I-(sol), and enhances the electrocatalytic activity of the nanostructures. 展开更多
关键词 Bi2S3 microspheres nanorod assembly defects/vacancies positron annihilationspectrometry transient photocurrent
原文传递
Characterization of tin(Ⅱ) sulfide defects/vacancies and correlation with their photocurrent
2
作者 Mingyang Liu Luqing Wang +7 位作者 Linan Zhou Sidong Lei Jarin Joyner Yingchao Yang Robert Vajtai Pulickel Ajayan Boris I. Yakobson Pol Spanos 《Nano Research》 SCIE EI CAS CSCD 2017年第1期218-228,共11页
The presence of defects/vacancies in nanomaterials influences the electronic structure of materials, and thus, it is necessary to study the correlation between the optoelectronic properties of a nanomaterial and its d... The presence of defects/vacancies in nanomaterials influences the electronic structure of materials, and thus, it is necessary to study the correlation between the optoelectronic properties of a nanomaterial and its defects/vacancies. Herein, we report a facile solvothermal route to synthesize three-dimensional (3D) SnS nanostructures formed by {131} faceted nanosheet assembly. The 3D SnS nanostructures were calcined at temperatures of 350, 400, and 450 ~C and used as counter electrodes, before their photocurrent properties were investigated. First principle computation revealed the photocurrent properties depend on the defect/vacancy concentration within the samples. It is very interesting that characterization with positron annihilation spectrometry confirmed that the density of defects/vacancies increased with the calcination temperature, and a maximum photocurrent was realized after treatment at 400 ℃. Further, the defect/vacancy density decreased when the calcination temperature reached 450℃ as the higher calcination temperature enlarged the mesopores and densified the pore walls, which led to a lower photocurrent value at 450℃ than at 400℃. 展开更多
关键词 SnS microspheres mesoporous nanosheetassembly defects/vacancies positron annihilationspectrometry photocurrent.
原文传递
Effect of Vacancy Defects on the Properties of CoS_(2) and FeS_(2)
3
作者 冯中营 ZHANG Jianmin +3 位作者 WANG Xiaowei YANG Wenjin JING Yinlan YANG Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期627-638,共12页
In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculat... In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices. 展开更多
关键词 cobalt disulfide iron disulfide vacancy defect fist principles
下载PDF
Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies,defects,or impurities
4
作者 Fateme Nadri Mohammad Mardaani Hassan Rabani 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期555-560,共6页
We present a semi-analytic method to study the electronic conductance of a lengthy armchair honeycomb nanoribbon in the presence of vacancies, defects, or impurities located at a small part of it. For this purpose, we... We present a semi-analytic method to study the electronic conductance of a lengthy armchair honeycomb nanoribbon in the presence of vacancies, defects, or impurities located at a small part of it. For this purpose, we employ the Green's function technique within the nearest neighbor tight-binding approach. We first convert the Hamiltonian of an ideal semiinfinite nanoribbon to the Hamiltonian of some independent polyacetylene-like chains. Then, we derive an exact formula for the self-energy of the perturbed part due to the existence of ideal parts. The method gives a fully analytical formalism for some cases such as an infinite ideal nanoribbon and the one including linear symmetric defects. We calculate the transmission coefficient for some different configurations of a nanoribbon with special width including a vacancy, edge geometrical defects, and two electrical impurities. 展开更多
关键词 NANORIBBON CONDUCTANCE vacancY impurity Green’s function
下载PDF
Thickness Impacts of Vacancy Defects in Epitaxial La0.7Sr0.3MnO3 Thin Films Using Slow Positron Beam 被引量:1
5
作者 刘建党 成斌 +1 位作者 杜淮江 叶邦角 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第6期685-688,746,共5页
Thickness effects of thin La0.7Sr0.3MnO3 (LSMO) films on (LaAlOa)0.3(Sr2AlTaO6)0.7 substrates were examined by a slow positron beam technique. Doppler-broadening line shape parameter S was measured as a function... Thickness effects of thin La0.7Sr0.3MnO3 (LSMO) films on (LaAlOa)0.3(Sr2AlTaO6)0.7 substrates were examined by a slow positron beam technique. Doppler-broadening line shape parameter S was measured as a function of thickness and differnt annealing conditions. Results reveal there could be more than one mechanism to induce vacancy-like defects. It was found that strain-induced defects mainly influence the S value of the in situ oxygenambience annealing LSMO thin films and the strain could vanish still faster along with the increase of thickness, and the oxygen-deficient induced defects mainly affect the S value of post-annealing LSMO films. 展开更多
关键词 Thin film Giant magnetoresistance Slow positron beam defect
下载PDF
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:2
6
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
下载PDF
Effect of vacancy defects on electronic properties and activation of sphalerite(110) surface by first-principles 被引量:11
7
作者 陈建华 陈晔 李玉琼 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期502-506,共5页
The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were inves... The electronic properties of sphalerite(110) surface with Zn-vacancy and S-vacancy were calculated by using density-functional theory,and the effects of vacancy defect on the copper activation of sphalerite were investigated.The calculated results indicate that surface state occurs in the band gap of Zn-vacancy sphalerite,which is from the contribution of S 3p orbital at the first layer of the surface.The presence of S-vacancy results in surface state appearing near the Fermi level and the bottom of conductor band,which are composed of S 3p and Zn 4s orbital,respectively.The surface structure of Zn-vacancy sphalerite is more stable than S-vacancy surface due to the occupation of Zn-vacancy by Cu atoms;hence,the substitution reaction of Cu for Zn vacancy is easier than the substitution of Cu for Zn atoms with S-vacancy surface. 展开更多
关键词 SPHALERITE vacancy defect Density Functional Theory calculations copper activation
下载PDF
Improvement of High-Speed Detection Algorithm for Nonwoven Material Defects Based on Machine Vision 被引量:2
8
作者 LI Chengzu WEI Kehan +4 位作者 ZHAO Yingbo TIAN Xuehui QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第4期416-427,共12页
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki... Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production. 展开更多
关键词 defect detection nonwoven materials deep learning object detection algorithm transfer learning halfprecision quantization
下载PDF
Built defects of homogeneous junction to enhance the lithium storage capacity of niobium pentoxide materials
9
作者 Huibin Ding Yang Luo +5 位作者 Zihan Song Cong Chen Kai Feng Xiaofei Yang Hongzhang Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期730-737,共8页
Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limit... Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles). 展开更多
关键词 Niobiumpent oxide Homojunction polycrystalline defects Oxygen vacancy
下载PDF
Role of vacancy-type defects in magnetism of GaMnN 被引量:1
10
作者 邢海英 陈雨 +6 位作者 纪骋 蒋盛翔 苑梦尧 郭志英 李琨 崔明启 张国义 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期517-522,共6页
Role of vacancy-type(N vacancy(VN) and Ga vacancy(VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation.Theoretical results show that both the VNand VGainfluence the ferromagnetic st... Role of vacancy-type(N vacancy(VN) and Ga vacancy(VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation.Theoretical results show that both the VNand VGainfluence the ferromagnetic state of a system.The VNcan induce antiferromagnetic state and the VGaindirectly modify the stability of the ferromagnetic state by depopulating the Mn levels in GaMnN.The transfer of electrons between the vacancy defects and Mn ions results in converting Mn3+(d4) into Mn2+(d5).The introduced VNand the ferromagnetism become stronger and then gradually weaker with Mn concentration increasing,as well as the coexistence of Mn3+(d4) and Mn2+(d5) are found in GaMnN films grown by metal–organic chemical vapor deposition.The analysis suggests that a big proportion of Mn3+changing into Mn2+will reduce the exchange interaction and magnetic correlation of Mn atoms and lead to the reduction of ferromagnetism of material. 展开更多
关键词 GAMNN vacancy defect FERROMAGNETISM first-principles calculation MOCVD
下载PDF
Co/CoO heterojunction rich in oxygen vacancies introduced by O_(2) plasma embedded in mesoporous walls of carbon nanoboxes covered with carbon nanotubes for rechargeable zinc-air battery 被引量:1
11
作者 Leijun Ye Weiheng Chen +1 位作者 Zhong-Jie Jiang Zhongqing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期14-25,共12页
Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well... Herein,Co/CoO heterojunction nanoparticles(NPs)rich in oxygen vacancies embedded in mesoporous walls of nitrogen-doped hollow carbon nanoboxes coupled with nitrogen-doped carbon nanotubes(P-Co/CoOV@NHCNB@NCNT)are well designed through zeolite-imidazole framework(ZIF-67)carbonization,chemical vapor deposition,and O_(2) plasma treatment.As a result,the threedimensional NHCNBs coupled with NCNTs and unique heterojunction with rich oxygen vacancies reduce the charge transport resistance and accelerate the catalytic reaction rate of the P-Co/CoOV@NHCNB@NCNT,and they display exceedingly good electrocatalytic performance for oxygen reduction reaction(ORR,halfwave potential[EORR,1/2=0.855 V vs.reversible hydrogen electrode])and oxygen evolution reaction(OER,overpotential(η_(OER,10)=377mV@10mA cm^(−2)),which exceeds that of the commercial Pt/C+RuO_(2) and most of the formerly reported electrocatalysts.Impressively,both the aqueous and flexible foldable all-solid-state rechargeable zinc-air batteries(ZABs)assembled with the P-Co/CoOV@NHCNB@NCNT catalyst reveal a large maximum power density and outstanding long-term cycling stability.First-principles density functional theory calculations show that the formation of heterojunctions and oxygen vacancies enhances conductivity,reduces reaction energy barriers,and accelerates reaction kinetics rates.This work opens up a new avenue for the facile construction of highly active,structurally stable,and cost-effective bifunctional catalysts for ZABs. 展开更多
关键词 HETEROJUNCTION oxygen evolution/reduction reaction oxygen vacancies rechargeable zinc–air battery three‐dimensional nitrogen‐doped hollow carbon nanoboxes
下载PDF
High quality repair of osteochondral defects in rats using the extracellular matrix of antler stem cells 被引量:1
12
作者 Yu-Su Wang Wen-Hui Chu +4 位作者 Jing-Jie Zhai Wen-Ying Wang Zhong-Mei He Quan-Min Zhao Chun-Yi Li 《World Journal of Stem Cells》 SCIE 2024年第2期176-190,共15页
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown... BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship. 展开更多
关键词 Osteochondral defect repair Mesenchymal stem cells Extracellular matrix DECELLULARIZATION Antler stem cells Reserve mesenchymal cells Xenogeneic
下载PDF
A DFT study of methane activation on graphite surfaces with vacancy defects 被引量:3
13
作者 Fengsi Liu Wei Chu +2 位作者 Wenjing Sun Ying Xue Qian Jiang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第6期708-712,共5页
The activation of methane on graphite surfaces with monovacancies and 5-8-5 vacancies have been investigated using density functional theory. Sixteen different initial adsorption configurations were investigated to id... The activation of methane on graphite surfaces with monovacancies and 5-8-5 vacancies have been investigated using density functional theory. Sixteen different initial adsorption configurations were investigated to identify the most favorable activation site. It is found that methane tends to be activated on the defective graphite surfaces, and the most stable configuration is that methane activation happened in the center hole of the monovacancy site, with a reaction energy of 1.13 eV. Electron transfer and weaker electrostatic potential of the vacancy region indicate that carbon atom of methane tends to fill the vacancy and makes the system more stable. 展开更多
关键词 density functional calculations defective graphite methane activation
下载PDF
Filling the in situ-generated vacancies with metal cations captured by C-N bonds of defect-rich 3D carbon nanosheet for bifunctional oxygen electrocatalysis 被引量:1
14
作者 Dawei Chen Wei Cao +3 位作者 Jing Liu Jie Wang Xiaoke Li Luhua Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期47-54,I0002,共9页
Nitrogen-doped carbon materials with vacancies/defects have been developed as highly efficient ORR electrocatalysts but with poor activity for OER,which limits their application in rechargeable metal-air batteries.Fil... Nitrogen-doped carbon materials with vacancies/defects have been developed as highly efficient ORR electrocatalysts but with poor activity for OER,which limits their application in rechargeable metal-air batteries.Filling the vacancies/defects with heteroatoms is expected to be an effective strategy to obtain surprising catalytic activities and improve their stability especially under the strongly oxidizing conditions during the OER process.Herein,we successfully transformed the defect-rich 3 D carbon nanosheets(DCN)into a bifunctional ORR/OER electrocatalyst(DCN-M)by utilizing the in-situ generated vacancies to capture metal cations via a modified salt-sealed strategy.By varying the metal(Fe,Ni)content,the captured metal cations in DCN-M existed in different chemical states,i.e.,metal atoms were stabilized by CàN bonds at low metal contents,while at high metal contents,bimetal particles were covered by graphene layers,taking responsibility for catalyzing the ORR and OER,respectively.In addition,the in-situ formed graphene layers with an interconnected structure facilitate the electron transport during the reactions.The Janus-feature of DCN-M in structures ensures superior bifunctional activity and good stability towards ORR/OER for the rechargeable Zn-air battery.This work provides an effective strategy to design multifunctional electrocatalysts by heteroatom filling into vacancies of carbon materials. 展开更多
关键词 Carbon catalyst vacancies/defects Heteroatom filling Bifunctional oxygen electrocatalysis Rechargeable Zn-air battery
下载PDF
Mono-Vacancy and B-Doped Defects in Carbon Heterojunction Nanodevices 被引量:2
15
作者 Ahlam A. El-Barbary Mohamed A. Kamel +2 位作者 Khaled M. Eid Hayam O. Taha Mohamed M. Hassan 《Graphene》 2015年第4期84-90,共7页
We present a detailed theoretical study of the behavior of mono-vacancy and B-doped defects in carbon heterojunction nanodevices. We have introduced a complete set of formation energy and surface reactivity calculatio... We present a detailed theoretical study of the behavior of mono-vacancy and B-doped defects in carbon heterojunction nanodevices. We have introduced a complete set of formation energy and surface reactivity calculations, considering a range of different diameters and chiralities of combined carbon nanotubes. We have investigated three distinct combinations of carbon heterojunctions using density functional theory (DFT) and applying B3LYP/3-21g: armchair-armchair herteojunctions, zigzag-zigzag heterojunctions, and zigzag-armchair heterojunctions. We have shown for first time a detailed study of formation energy of mono-vacancy and B-doped defects of carbon heterojunction nanodevices. Our calculations show that the highest surface reactivity is found for the B-doped zigzag-armchair heterojunctions and it is easier to remove the carbon atom from the network of heterojunction armchair-armchair CNTs than the heterojunction zigzag-armchair and zigzag-zigzag CNTs. 展开更多
关键词 Band Gaps CARBON HETEROJUNCTIONS DFT Mono-vacancy defects Boron Doping
下载PDF
Defects and morphology engineering for constructing V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S nanotube heterojunction arrays toward efficient bifunctional electrocatalyst for overall water splitting
16
作者 Wenyuan Sun Alan Meng +4 位作者 Lei Wang Guicun Li Jinfeng Cui Yongkai Sun Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期29-40,共12页
The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube he... The development of highly active,stable and inexpensive electrocatalysts for hydrogen production by defects and morphology engineering remains a great challenge.Herein,S vacancies-rich Ni_(3)S_(2)@Cu_(2)S nan-otube heterojunction arrays were in-situ grown on copper foam(V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF)for efficient electrocatalytic overall water splitting.With the merits of nanotube arrays and efficient electronic mod-ulation drived by the OD vacancy defect and 2D heterojunction defect,the resultant V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF electrocatalyst exhibits excellent electrocatalytic activity with a low overpotential of 47 mV for the hydrogen evolution reaction(HER)at 10 mA cm^(-2) current density,and 263 mV for the oxygen evolution reaction(OER)at 50 mA cm^(-2) current density,as well as a cell voltage of 1.48 V at 10 mA cm^(-2).Moreover,the nanotube heterojunction arrays endows V_(s)-Ni_(3)S_(2)@V_(s)-Cu_(2)S NHAs/CF with outstanding stability in long-term catalytic processes,as confirmed by the continuous chronopotentiom-etry tests at current densities of 10 mA cm^(-2) for 100 h. 展开更多
关键词 Nanotubearrays HETEROJUNCTION vacancY Bifunctional electrocatalyst Overall water splitting
下载PDF
Lattice vibration and thermodynamical properties of a single-layer graphene in the presence of vacancy defects 被引量:1
17
作者 黎莎 吕增涛 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期410-417,共8页
The phonon density of states (PDOS) and the thermodynamical properties including the heat capacity, the free energy, and the entropy of a single-layer graphene with vacancy defects have been studied theoretically. W... The phonon density of states (PDOS) and the thermodynamical properties including the heat capacity, the free energy, and the entropy of a single-layer graphene with vacancy defects have been studied theoretically. We first analytically derive the general formula of the lattice vibration frequency, and then numerically discuss the effect of the defects on the PDOS. Our results suggest that the vacancy defects will induce the sawtooth-like oscillation of the PDOS and the specific oscillation patterns depend on the concentration and the spatial distribution of the vacancies. In addition, it is verified that the vacancy defects will cause the increase of the beat capacity because of the vacancy-induced low-frequency resonant peak. Moreover, the influences of the vacancies on the free energy and the entropy are investigated. 展开更多
关键词 phonons in graphene thermal properties defects
下载PDF
Sulfur vacancies and heterogeneous interfaces promote high performance sodium storage of bimetallic chalcogenide hollow nanospheres
18
作者 Shiyue Cao Xiaoting Xu +2 位作者 Qiming Liu Huijuan Zhu Ting Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期596-610,I0013,共16页
Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electro... Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode. 展开更多
关键词 Sulfur vacancies Heterogeneous interface Interactions Sodium ion batteries
下载PDF
Modeling the Interaction between Vacancies and Grain Boundaries during Ductile Fracture
19
作者 Mingjian Li Ping Yang Pengyang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2019-2034,共16页
The experimental results in previous studies have indicated that during the ductile fracture of pure metals,vacancies aggregate and form voids at grain boundaries.However,the physical mechanism underlying this phenome... The experimental results in previous studies have indicated that during the ductile fracture of pure metals,vacancies aggregate and form voids at grain boundaries.However,the physical mechanism underlying this phenomenon remains not fully understood.This study derives the equilibrium distribution of vacancies analytically by following thermodynamics and the micromechanics of crystal defects.This derivation suggests that vacancies cluster in regions under hydrostatic compression to minimize the elastic strain energy.Subsequently,a finite element model is developed for examining more general scenarios of interaction between vacancies and grain boundaries.This model is first verified and validated through comparison with some available analytical solutions,demonstrating consistency between finite element simulation results and analytical solutions within a specified numerical accuracy.A systematic numerical study is then conducted to investigate the mechanism that might govern the micromechanical interaction between grain boundaries and the profuse vacancies typically generated during plastic deformation.The simulation results indicate that the reduction in total elastic strain energy can indeed drive vacancies toward grain boundaries,potentially facilitating void nucleation in ductile fracture. 展开更多
关键词 Ductile fracture vacancY grain boundary MICROMECHANICAL finite element method
下载PDF
Negative Differential Resistance and Spin-Filtering Effects in Zigzag Graphene Nanoribbons with Nitrogen-Vacancy Defects
20
作者 徐婷 黄静 李群祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第6期653-658,I0003,共7页
We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combin... We explore the electronic and transport properties of zigzag graphene nanoribbons (GNRs) with nitrogen-vacancy defects by performing fully self-consistent spin-polarized density functional theory calculations combined with non-equilibrium Green's function technique. We observe robust negative di erential resistance (NDR) effect in all examined molecular junctions. Through analyzing the calculated electronic structures and the bias-dependent transmission coefficients, we find that the narrow density of states of electrodes and the bias-dependent effective coupling between the central molecular orbitals and the electrode subbands are responsible for the observed NDR phenomenon. In addition, the obvious di erence of the transmission spectra of two spin channels is observed in some bias ranges, which leads to the near perfect spin-filtering effect. These theoretical findings imply that GNRs with nitrogenvacancy defects hold great potential for building molecular devices. 展开更多
关键词 defective graphene nanoribbon Electronic structure Spin-polarized transport property Negative differential resistance Spin-filtering
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部