In the Changqing Oilfield in northwest China, when traditional petroleum exploitation encounters forestry reserves or water source protection areas, sectorial well-factory design is proposed. The most distinct feature...In the Changqing Oilfield in northwest China, when traditional petroleum exploitation encounters forestry reserves or water source protection areas, sectorial well-factory design is proposed. The most distinct feature of a sectorial well-factory is the deviation of the well from the minimum horizontal principal stress, resulting in hydraulic fracture deflection after the initiation, along with possible well interference (i.e., fracture hit) and fracture coalescence in the oblique wells. Four indexes describing well deflection are then proposed according to fracture morphology. Several fracturing designs, including stage arrangement, fracturing sequences, and fracturing techniques are applied to study the feasibility of the sectorial well-factory design. The results show that the “gradual” or “sparse” stage arrangement, large injection rate, and simultaneous multifracture treatment can help to optimize the fracture morphology and stimulation design. However, the subsequent stress shadowing effect usually adversely affects the fracturing of adjacent wells. With a small initial horizontal stress difference, large injection rate and staggered stage arrangement can achieve ideal stimulation performance. Our results can provide a guidance for optimizing stimulation design in unconventional well-factory while taking into account environmental protection.展开更多
Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T ...The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T axle steel specimens.The variation of the plastic-induced crack closure(PICC)effect and the roughness-induced crack closure(RICC)effect during crack deflection in the mixed-mode is examined in this study.The results show that the load perpendicular to the crack propagation direction hinders the slip effect caused by the load parallel to the crack propagation direction under mixed-mode loading,and the crack deflection is an intuitive manifestation of the interaction between the PICC and RICC.The proportion of the RA value change on the crack side caused by contact friction was reduced by the interaction between PICC and RICC.The roughness of the crack surface before and after the crack deflection is different,and the spatial torsion crack surface is formed during the crack propagation process.With the increase of the crack length,the roughness of the fracture surface increases.During the crack deflection process,the PICC value fluctuates around 0.2,and the RICC value is increased to 0.15.展开更多
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical h...The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical hardwood species from the Congo Basin. This maximum deflection is caused by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide how to predict this deflection in case of long-term load for such structures. This can be done by studying load-displacement (P-Δ) behaviour of these structures while taking into account second order effects. To reach this goal, a nonlinear analysis has been performed on a three-dimensional beam column embedded on both ends. Since conducting experimental investigations on large span structural products is time-consuming and expensive especially in developing countries, a numerical model has been implemented using the Newton-Raphson method to predict load-displacement (P-Δ) curve on a slender glulam beam column made of tropical hardwood species. On one hand, the beam has been analyzed without wood connection. On the other hand, the beam has been analyzed with a bolted wood connection and a slotted-in steel plate. The load cases considered include self-weight and a uniformly applied long-term load. Combinations of serviceability limit states (SLS) and ultimate limit states (ULS) have also been considered, among other factors. A finite-element software RFEM 5 has been used to implement the model. The results showed that the use of steel can reduce displacement by 20.96%. Additionally, compared to the maximum deflection provided by Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 85.63%. By harnessing the plastic resistance of steel, the bending resistance of wood can be increased by 32.94%.展开更多
A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an up...A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle, a downstream nozzle, an oscillating chamber and two switches. It is experimentally shown that the deflective angle may reach 9.53 degree. The generated pressure fluctuation is very regular and the jet can efficiently increase the ability for breaking and cutting by eliminating the water cushion effect associated with a continuous jet.展开更多
A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and p...A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.展开更多
There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam...There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam extracted system is different.The control of HVPS includes the current settings, the status display and the HV turn on/off.展开更多
The layered pavements usually exhibit complicated mechanical properties with the effect of complex material properties under external environment.In some cases,such as launching missiles or rockets,layered pavements a...The layered pavements usually exhibit complicated mechanical properties with the effect of complex material properties under external environment.In some cases,such as launching missiles or rockets,layered pavements are required to bear large impulse load.However,traditional methods cannot non-destructively and quickly detect the internal structural of pavements.Thus,accurate and fast prediction of the mechanical properties of layered pavements is of great importance and necessity.In recent years,machine learning has shown great superiority in solving nonlinear problems.In this work,we present a method of predicting the maximum deflection and damage factor of layered pavements under instantaneous large impact based on random forest regression with the deflection basin parameters obtained from falling weight deflection testing.The regression coefficient R^(2)of testing datasets are above 0.94 in the process of predicting the elastic moduli of structural layers and mechanical responses,which indicates that the prediction results have great consistency with finite element simulation results.This paper provides a novel method for fast and accurate prediction of pavement mechanical responses under instantaneous large impact load using partial structural parameters of pavements,and has application potential in non-destructive evaluation of pavement structure.展开更多
In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), fact...In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.展开更多
Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis,commonly known as moso bamboo,with a growth cycle of 3–8 years.Cellulose crystallinity i...Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis,commonly known as moso bamboo,with a growth cycle of 3–8 years.Cellulose crystallinity in the bottom(B),middle(M)and top(T)of bamboo at different ages was calculated using peak height analysis in X-ray diffraction.Heatmap of Spearman correlation analysis was used to represent the correlation between chemical composition and impact mechanics.The breaking load(BL),fracture energy(FE)and impact deflection(ID)of 3–8-year-old bamboo were found to be in the range of~670–2120 N,~5.17–15.55 J,and~3.60–~17.76 mm,respectively.As the growth period of bamboo rises,the cellulose crystallinity at the B and T decreases first and then increases,while that for the M increases first and then remains stable.Similarly,the bending impact performance of bamboo was found to become stable with its growth and age.The flexural impact and toughness of the 4-year-old bamboo base material were better than other specimens.The enhancement in the bending impact properties of bamboo at different growth periods was influenced by the lignin content,while the value of FE was mainly positively correlated with ash,cold and hot water extracts and benzyl alcohol content.However the content of holocellulose and pentosan,air-dry density and,base density negatively influenced the FE.With the change in the height of the bamboo,the correlation between its impact mechanical properties and chemical composition gradually decreased.This study provides data support and theoretical basis for the age-appropriate thinning and application of moso bamboo.展开更多
Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the m...Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.展开更多
By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The va...By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The values of SNC and the curvature parameters were first determined through simulations using the ELSYM-5 software.Deflection measurements were carried out in experimental segments of Brazilian highways.The resilient moduli of each layer were determined from backcalculation using the ELMOD program for a three-layer system.Theoretical correlation models between SNC and the basin deformation parameter were determined and later,calibrated with the results of experimental sections.Utilizing the studied models,a good correlation was found between SNC,area parameter and maximum deflection,enabling the determination of SNC through deflection measurements and assisting in the diagnostic of structural condition of asphalt pavements.展开更多
In this work we present the results of the optical evaluation of vibrations of a conventional concrete column with a metal frame.In a previous work[1]we reported the optical evaluation of a pure concrete column,withou...In this work we present the results of the optical evaluation of vibrations of a conventional concrete column with a metal frame.In a previous work[1]we reported the optical evaluation of a pure concrete column,without a metal framework.In this evaluation we expected to obtain a noticeably different result,but that was not the case,then the obtained results are surprisingly similar.From the LPD evaluations,the first 12 vibration resonances were found,which fit very well with the basic applied theory(the cantilever theory).Using known average values,we estimate the corresponding column effective length,obtaining an average value of 2.5 m.As in the former case of the concrete column,we find a discrepancy with respect to the length value,measurable from the ground(1.75 m),which can be explained again by the fact that the column and its base were built on inconsistent terrain.展开更多
For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis...For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited.展开更多
The important parameters that influence the mechanical property of the pavinglayer on an orthotropic steel bridge deck are the paving layer thickness and modulus of the asphaltconcrete surfacing. Three important indic...The important parameters that influence the mechanical property of the pavinglayer on an orthotropic steel bridge deck are the paving layer thickness and modulus of the asphaltconcrete surfacing. Three important indices that control the typical failures of the paving layerare the maximum tensile stress of paving layer, the maximum shear stress between the steel deck andthe paving layer, and the maximum deflection on the paving surface. In this paper, the analyticalmodel of paving systems on orthotropic steel bridge deck is established, and the finite elementmethod is adopted to study the stress and strain of paving system. With the variation of asphaltconcrete modulus in high or low temperature season, the influences of paving layer thickness onthree control indices are researched. The results provide a theoretical basis for the determinationof thickness of the paving layer on the steel bridge deck.展开更多
基金funded by the National Natural Science Foundation of China(42077247,52104029)the Fundamental Research Funds for the Central Universities.
文摘In the Changqing Oilfield in northwest China, when traditional petroleum exploitation encounters forestry reserves or water source protection areas, sectorial well-factory design is proposed. The most distinct feature of a sectorial well-factory is the deviation of the well from the minimum horizontal principal stress, resulting in hydraulic fracture deflection after the initiation, along with possible well interference (i.e., fracture hit) and fracture coalescence in the oblique wells. Four indexes describing well deflection are then proposed according to fracture morphology. Several fracturing designs, including stage arrangement, fracturing sequences, and fracturing techniques are applied to study the feasibility of the sectorial well-factory design. The results show that the “gradual” or “sparse” stage arrangement, large injection rate, and simultaneous multifracture treatment can help to optimize the fracture morphology and stimulation design. However, the subsequent stress shadowing effect usually adversely affects the fracturing of adjacent wells. With a small initial horizontal stress difference, large injection rate and staggered stage arrangement can achieve ideal stimulation performance. Our results can provide a guidance for optimizing stimulation design in unconventional well-factory while taking into account environmental protection.
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
基金Supported by National Natural Science Foundation of China (Grant No.52375159)National Railway Administration of China (Grant No.KF2023-025)the Independent Research Project of the State Key Laboratory of Traction Power (Grant No.2022TPL_T03)。
文摘The crack-closure effect is a crucial factor that affects the crack growth rate and should be considered in simulation analysis and testing.A mixed-mode I+II loading fatigue crack growth test was performed using EA4T axle steel specimens.The variation of the plastic-induced crack closure(PICC)effect and the roughness-induced crack closure(RICC)effect during crack deflection in the mixed-mode is examined in this study.The results show that the load perpendicular to the crack propagation direction hinders the slip effect caused by the load parallel to the crack propagation direction under mixed-mode loading,and the crack deflection is an intuitive manifestation of the interaction between the PICC and RICC.The proportion of the RA value change on the crack side caused by contact friction was reduced by the interaction between PICC and RICC.The roughness of the crack surface before and after the crack deflection is different,and the spatial torsion crack surface is formed during the crack propagation process.With the increase of the crack length,the roughness of the fracture surface increases.During the crack deflection process,the PICC value fluctuates around 0.2,and the RICC value is increased to 0.15.
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
文摘The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical hardwood species from the Congo Basin. This maximum deflection is caused by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide how to predict this deflection in case of long-term load for such structures. This can be done by studying load-displacement (P-Δ) behaviour of these structures while taking into account second order effects. To reach this goal, a nonlinear analysis has been performed on a three-dimensional beam column embedded on both ends. Since conducting experimental investigations on large span structural products is time-consuming and expensive especially in developing countries, a numerical model has been implemented using the Newton-Raphson method to predict load-displacement (P-Δ) curve on a slender glulam beam column made of tropical hardwood species. On one hand, the beam has been analyzed without wood connection. On the other hand, the beam has been analyzed with a bolted wood connection and a slotted-in steel plate. The load cases considered include self-weight and a uniformly applied long-term load. Combinations of serviceability limit states (SLS) and ultimate limit states (ULS) have also been considered, among other factors. A finite-element software RFEM 5 has been used to implement the model. The results showed that the use of steel can reduce displacement by 20.96%. Additionally, compared to the maximum deflection provided by Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 85.63%. By harnessing the plastic resistance of steel, the bending resistance of wood can be increased by 32.94%.
基金Funded by National Natural Science Fund of China(No. 50074035)
文摘A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle, a downstream nozzle, an oscillating chamber and two switches. It is experimentally shown that the deflective angle may reach 9.53 degree. The generated pressure fluctuation is very regular and the jet can efficiently increase the ability for breaking and cutting by eliminating the water cushion effect associated with a continuous jet.
基金This work was supported by the National Natural Science Foundation of China(No.11922504).
文摘A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.
文摘There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam extracted system is different.The control of HVPS includes the current settings, the status display and the HV turn on/off.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.12075168)the Fund from the Science and Technology Commission of Shanghai Municipality(Grant No.21JC1405600)。
文摘The layered pavements usually exhibit complicated mechanical properties with the effect of complex material properties under external environment.In some cases,such as launching missiles or rockets,layered pavements are required to bear large impulse load.However,traditional methods cannot non-destructively and quickly detect the internal structural of pavements.Thus,accurate and fast prediction of the mechanical properties of layered pavements is of great importance and necessity.In recent years,machine learning has shown great superiority in solving nonlinear problems.In this work,we present a method of predicting the maximum deflection and damage factor of layered pavements under instantaneous large impact based on random forest regression with the deflection basin parameters obtained from falling weight deflection testing.The regression coefficient R^(2)of testing datasets are above 0.94 in the process of predicting the elastic moduli of structural layers and mechanical responses,which indicates that the prediction results have great consistency with finite element simulation results.This paper provides a novel method for fast and accurate prediction of pavement mechanical responses under instantaneous large impact load using partial structural parameters of pavements,and has application potential in non-destructive evaluation of pavement structure.
基金supported by the Natural Science Foundation of China under (Nos. 42172293, 4190020747, and 41472268)。
文摘In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.
基金Fundamental Research on Impact Toughness and Response Mechanism of Bamboo-woven Structural Materials Funded of International Center for Bamboo and Rattan(1632020016).
文摘Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis,commonly known as moso bamboo,with a growth cycle of 3–8 years.Cellulose crystallinity in the bottom(B),middle(M)and top(T)of bamboo at different ages was calculated using peak height analysis in X-ray diffraction.Heatmap of Spearman correlation analysis was used to represent the correlation between chemical composition and impact mechanics.The breaking load(BL),fracture energy(FE)and impact deflection(ID)of 3–8-year-old bamboo were found to be in the range of~670–2120 N,~5.17–15.55 J,and~3.60–~17.76 mm,respectively.As the growth period of bamboo rises,the cellulose crystallinity at the B and T decreases first and then increases,while that for the M increases first and then remains stable.Similarly,the bending impact performance of bamboo was found to become stable with its growth and age.The flexural impact and toughness of the 4-year-old bamboo base material were better than other specimens.The enhancement in the bending impact properties of bamboo at different growth periods was influenced by the lignin content,while the value of FE was mainly positively correlated with ash,cold and hot water extracts and benzyl alcohol content.However the content of holocellulose and pentosan,air-dry density and,base density negatively influenced the FE.With the change in the height of the bamboo,the correlation between its impact mechanical properties and chemical composition gradually decreased.This study provides data support and theoretical basis for the age-appropriate thinning and application of moso bamboo.
基金financially supported by the foundation of the Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources,China (No. MESTA-2020-B006)the National Natural Science Foundation of China (No.41774001)
文摘Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.
文摘By using the concept of modified structural number(SNC)and deflection measurements,a simplified calculation methodology,that permits the structural condition evaluation of an existing pavement,is being proposed.The values of SNC and the curvature parameters were first determined through simulations using the ELSYM-5 software.Deflection measurements were carried out in experimental segments of Brazilian highways.The resilient moduli of each layer were determined from backcalculation using the ELMOD program for a three-layer system.Theoretical correlation models between SNC and the basin deformation parameter were determined and later,calibrated with the results of experimental sections.Utilizing the studied models,a good correlation was found between SNC,area parameter and maximum deflection,enabling the determination of SNC through deflection measurements and assisting in the diagnostic of structural condition of asphalt pavements.
文摘In this work we present the results of the optical evaluation of vibrations of a conventional concrete column with a metal frame.In a previous work[1]we reported the optical evaluation of a pure concrete column,without a metal framework.In this evaluation we expected to obtain a noticeably different result,but that was not the case,then the obtained results are surprisingly similar.From the LPD evaluations,the first 12 vibration resonances were found,which fit very well with the basic applied theory(the cantilever theory).Using known average values,we estimate the corresponding column effective length,obtaining an average value of 2.5 m.As in the former case of the concrete column,we find a discrepancy with respect to the length value,measurable from the ground(1.75 m),which can be explained again by the fact that the column and its base were built on inconsistent terrain.
基金The National Natural Science Foundation of China (No.50708056)Reward Fund for Excellent Young and Middle-Aged Scientists of Shandong Province(No.2008BS09015)+1 种基金the Natural Science Foundation of Shandong Province (No.Q2006F02)Key Technologies R & D Program of Shandong Province (No.2008GG10006009)
文摘For studying the driving role of dynamic pressure in water-induced damage of asphalt pavement, based on the fast Lagrangian finite difference method and Biot dynamic consolidation theory, fluid-solid coupling analysis of the pavement is conducted considering asphalt mixtures as porous media. Results reveal that the development and dissipation of the dynamic pore pressure are coinstantaneous and this makes both the positive and negative dynamic pore pressure and seepage force alternate with time. Repetitive hydrodynamic pumping and sucking during moisture damage is proved. The dynamic pore pressure increases with vehicle velocity. Effective stress and deflection of pavement decrease due to the dynamic pore water pressure. However, the emulsification and replacement of the asphalt membrane by water are accelerated. The maximum dynamic pore pressure occurs at the bottom of the surface course. So it is suggested that a drain course should be set up to change the draining condition from single-sided drain to a two-sided drain, and thus moisture damage can be effectively limited.
文摘The important parameters that influence the mechanical property of the pavinglayer on an orthotropic steel bridge deck are the paving layer thickness and modulus of the asphaltconcrete surfacing. Three important indices that control the typical failures of the paving layerare the maximum tensile stress of paving layer, the maximum shear stress between the steel deck andthe paving layer, and the maximum deflection on the paving surface. In this paper, the analyticalmodel of paving systems on orthotropic steel bridge deck is established, and the finite elementmethod is adopted to study the stress and strain of paving system. With the variation of asphaltconcrete modulus in high or low temperature season, the influences of paving layer thickness onthree control indices are researched. The results provide a theoretical basis for the determinationof thickness of the paving layer on the steel bridge deck.