A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative s...Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography. This paper proposes a novel electron beam focusing, shaping,and deflection electron gun for distributed X-ray sources.The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then, multifocal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected(deflected amplitude 10.5 mm)and non-deflected electron beams at full width at half maximum are 0.80 mm 90.50 mm and 0.55 mm 90.40 mm, respectively(anode voltage 160 kV; beam current 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array chip and a rotating metal disk.展开更多
This work studies large deflections of slen- der, non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed con- tinuous load and a concentrated load at the free end ...This work studies large deflections of slen- der, non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed con- tinuous load and a concentrated load at the free end of the beam. The material of the cantilever is assumed to be non- linearly elastic. Different nonlinear relations between stress and strain in tensile and compressive domain are considered. The accuracy of numerical solutions is evaluated by com- paring them with results from previous studies and with a laboratory experiment.展开更多
A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease ...A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease and apparent inhibition constant (K-i) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.展开更多
The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam ...The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam core subjected to a concentrated loading. The interaction of plastic bending and stretching in the local deformation regions of the face sheet was considered in the analytical model. Moreover, the effects of the shear strength of the foam core on the indentation behavior were discussed in detail. The finite element simulations were preformed to validate the theoretical model. Comparisons between the analytical predictions and finite element results were conducted and good agreement was achieved. The results show that the membrane force dominates indentation behavior of the sandwich beams when the maximum deflection exceeds the thickness of the face sheet.展开更多
When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key...When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.展开更多
The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution ...The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution can transform the basic equation, an integral differential equation into nonlinear algebraic ones, thus simplify computational process. Compared with present results, it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.展开更多
The large deflection of an axially extensible curved beam with a rectangular cross-section is investigated. The elastic beam is assumed to satisfy the Euler-Bernoulli postulation and be made of the Ludwick type materi...The large deflection of an axially extensible curved beam with a rectangular cross-section is investigated. The elastic beam is assumed to satisfy the Euler-Bernoulli postulation and be made of the Ludwick type material. Through reasonably simplified integration, the strain and curvature of the axis of the beam are presented in implicit formulations. The governing equations involving both geometric and material nonlin- earities of the curved beam are derived and solved by the shooting method. When the initial curvature of the beam is zero, the curved beam is degenerated into a straight beam, and the predicted results obtained by the present model are consistent with those in the open literature. Numerical examples are further given for curved cantilever and simply supported beams, and the couplings between elongation and bending are found for the curved beams.展开更多
In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear e...In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear equations governing the non-linear deformation,a curvilinear coordinate system is introduced.A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities,infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials.The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam.The effects of taper ratio,inclined end load angle and material property gradient on large deflection of the beam are evaluated.The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.展开更多
Nonlinear governing equations are established for large deflection of incompressible fluid saturated poroelastic beams under constraint that diffusion of the pore fluid is only in the axial direction of the deformed b...Nonlinear governing equations are established for large deflection of incompressible fluid saturated poroelastic beams under constraint that diffusion of the pore fluid is only in the axial direction of the deformed beams. Then, the nonlinear bending of a saturated poroelastic cantilever beam with fixed end impermeable and flee end permeable, subjected to a suddenly applied constant concentrated transverse load at its free end, is examined with the Gaierkin truncation method. The curves of deflections and bending moments of the beam skeleton and the equivalent couples of the pore fluid pressure are shown in figures. The results of the large deflection and the small deflection theories of the cantilever poroelastic beam are compared, and the differences between them are revealed. It is shown that the results of the large deflection theory are less than those of the corresponding small deflection theory, and the times needed to approach its stationary states for the large deflection theory are much less than those of the small deflection theory.展开更多
In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting di...In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.展开更多
Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure ...Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before cracking. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in oractice.展开更多
Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying...Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.展开更多
In this paper,a comparative analysis of two beams’deflections,one supported-embedded beam and a bi-supported beam,is presented.For such comparison,first the respective second-order linear Ordinary Differential Equati...In this paper,a comparative analysis of two beams’deflections,one supported-embedded beam and a bi-supported beam,is presented.For such comparison,first the respective second-order linear Ordinary Differential Equations(ODEs)were obtained.Along with the boundary conditions,there are two Boundary Value Problems(BVPs),making it possible to perform their numerical and analytical solutions.For numerical solutions,a Matlab algorithm was implemented based on the Finite Difference Method(FDM).The analytical solutions were also obtained for comparison with the numerical ones and with the validation method.In the end we analyzed the shapes of the elastic lines of the two beams caused by the loads coming from the weight of each one.展开更多
During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques...During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.展开更多
Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling w...Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.展开更多
In the paper,the analytic static deflection solutions of uniform cantilever beams resting on nonlinear elastic rotational boundary are developed by the Modified Adomian Decomposition Method(MADM).If the applied force ...In the paper,the analytic static deflection solutions of uniform cantilever beams resting on nonlinear elastic rotational boundary are developed by the Modified Adomian Decomposition Method(MADM).If the applied force function is an analytic function,then the deflection function can be derived and expressed in Maclaurin series.A recurrence relation for the coefficients of the Maclaurin series is derived.It is shown that the proposed solution method is accurate and efficient.The solution method can be successfully applied to the uniform cantilever beam and non-linear elastic rotational boundary problem.展开更多
Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compa...Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compared with experimental results obtained by using a fibre-optic diagnostic technique based on optical beam deflection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. It is observed that the increasing of viscosity decreases the maximum bubble radii but increases the minimum bubble radii and the oscillation time. These experimental results are consistent with numerical results.展开更多
The solution and computational aspects on nonlinear deflection of Yongjiang Railway Bridge in Ningbo were investigated. An approximate iteration algorithm on nonlinear governing equation was presented, and the obtaine...The solution and computational aspects on nonlinear deflection of Yongjiang Railway Bridge in Ningbo were investigated. An approximate iteration algorithm on nonlinear governing equation was presented, and the obtained results show that, if altitude difference and span of the riverbanks are taken as 5 meters and 100 meters, respectively, the maximum gradient in the middle of the bridge exceeds 5%, much larger than maximum allowance gradient in railway design code. Therefore, a new solution scheme for decreasing gradient of the bridge is put forward, that is, the altitude difference between two riverbanks can be decreased to about 1/10 of the initial magnitude by building roadbeds with 0.5% gradient and 1 kilometer length at two riverbanks. As a direct result, the deflection gradient of the railway bridge is much reduced and the value is between 0.5% similar to 0.6%.展开更多
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
文摘Distributed X-ray sources comprise a single vacuum chamber containing multiple X-ray sources that are triggered and emit X-rays at a specific time and location. This process facilitates an application for innovative system concepts in X-ray and computer tomography. This paper proposes a novel electron beam focusing, shaping,and deflection electron gun for distributed X-ray sources.The electron gun uses a dispenser cathode as an electron emitter, a mesh grid to control emission current, and two electrostatic lenses for beam shaping, focusing, and deflection. Novel focusing and deflecting electrodes were designed to increase the number of focal spots in the distributed source. Two identical half-rectangle opening electrodes are controlled by adjusting the potential of the two electrodes to control the electron beam trajectory, and then, multifocal spots are obtained on the anode target. The electron gun can increase the spatial density of the distributed X-ray sources, thereby improving the image quality. The beam experimental results show that the focal spot sizes of the deflected(deflected amplitude 10.5 mm)and non-deflected electron beams at full width at half maximum are 0.80 mm 90.50 mm and 0.55 mm 90.40 mm, respectively(anode voltage 160 kV; beam current 30 mA). The imaging experimental results demonstrate the excellent spatial resolution and time resolution of an imaging system built with the sources, which has an excellent imaging effect on a field-programmable gate array chip and a rotating metal disk.
文摘This work studies large deflections of slen- der, non-prismatic cantilever beams subjected to a combined loading which consists of a non-uniformly distributed con- tinuous load and a concentrated load at the free end of the beam. The material of the cantilever is assumed to be non- linearly elastic. Different nonlinear relations between stress and strain in tensile and compressive domain are considered. The accuracy of numerical solutions is evaluated by com- paring them with results from previous studies and with a laboratory experiment.
文摘A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease and apparent inhibition constant (K-i) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.
基金Projects(11102146,11372235,11272246,11021202,11002107)supported by the National Natural Science Foundation of ChinaProject(2011CB610301)supported by the National Basic Research Program of ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The quasi-static indentation behavior of sandwich beams with a metal foam core was investigated. An analytical model was developed to predict the large deflections of indention of the sandwich beams with a metal foam core subjected to a concentrated loading. The interaction of plastic bending and stretching in the local deformation regions of the face sheet was considered in the analytical model. Moreover, the effects of the shear strength of the foam core on the indentation behavior were discussed in detail. The finite element simulations were preformed to validate the theoretical model. Comparisons between the analytical predictions and finite element results were conducted and good agreement was achieved. The results show that the membrane force dominates indentation behavior of the sandwich beams when the maximum deflection exceeds the thickness of the face sheet.
基金supported by the National Natural Science Foundation of China(No.52074042)National Key R&D Program of China(No.2018YFC1504802).
文摘When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.
文摘The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution can transform the basic equation, an integral differential equation into nonlinear algebraic ones, thus simplify computational process. Compared with present results, it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.
基金supported by the National Natural Science Foundation of China(Nos.11472035 and 11472034)
文摘The large deflection of an axially extensible curved beam with a rectangular cross-section is investigated. The elastic beam is assumed to satisfy the Euler-Bernoulli postulation and be made of the Ludwick type material. Through reasonably simplified integration, the strain and curvature of the axis of the beam are presented in implicit formulations. The governing equations involving both geometric and material nonlin- earities of the curved beam are derived and solved by the shooting method. When the initial curvature of the beam is zero, the curved beam is degenerated into a straight beam, and the predicted results obtained by the present model are consistent with those in the open literature. Numerical examples are further given for curved cantilever and simply supported beams, and the couplings between elongation and bending are found for the curved beams.
文摘In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear equations governing the non-linear deformation,a curvilinear coordinate system is introduced.A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities,infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials.The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam.The effects of taper ratio,inclined end load angle and material property gradient on large deflection of the beam are evaluated.The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.
基金the National Natural Science Foundation of China(No.10272070)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘Nonlinear governing equations are established for large deflection of incompressible fluid saturated poroelastic beams under constraint that diffusion of the pore fluid is only in the axial direction of the deformed beams. Then, the nonlinear bending of a saturated poroelastic cantilever beam with fixed end impermeable and flee end permeable, subjected to a suddenly applied constant concentrated transverse load at its free end, is examined with the Gaierkin truncation method. The curves of deflections and bending moments of the beam skeleton and the equivalent couples of the pore fluid pressure are shown in figures. The results of the large deflection and the small deflection theories of the cantilever poroelastic beam are compared, and the differences between them are revealed. It is shown that the results of the large deflection theory are less than those of the corresponding small deflection theory, and the times needed to approach its stationary states for the large deflection theory are much less than those of the small deflection theory.
文摘In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.
文摘Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before cracking. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in oractice.
基金Supported by the National Natural Science Foundation of China(51276017)
文摘Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.
文摘In this paper,a comparative analysis of two beams’deflections,one supported-embedded beam and a bi-supported beam,is presented.For such comparison,first the respective second-order linear Ordinary Differential Equations(ODEs)were obtained.Along with the boundary conditions,there are two Boundary Value Problems(BVPs),making it possible to perform their numerical and analytical solutions.For numerical solutions,a Matlab algorithm was implemented based on the Finite Difference Method(FDM).The analytical solutions were also obtained for comparison with the numerical ones and with the validation method.In the end we analyzed the shapes of the elastic lines of the two beams caused by the loads coming from the weight of each one.
基金This paper was financially supported by the Project 973 of Chinese National Program of Basic Research (No. 2002CB412701) the National Natural Science Foundation (No. 40502027)the Project of Innovation Program of Chinese Academy of Sciences (No. KZCX2-306).
文摘During the construction of some large-scale rock engineering,high-steep slopes and insufficient slope stability induced by unloading fissures are often encountered.For the reinforcement of these slopes,some techniques(including conventional pre-stressed anchoring cable and unconventional anchoring hole)are usually utilized,however,having several obvious defects.Thus,it is very difficult for a designer to design an efficient reinforcement scheme for the high-steep slopes.For this reason,the authors develop the pre-stressed anchoring beam technique,in which tensile capacity of pre-stressed structures are fully utilized.It is analyzed that the new technique is characterized by multi-functions,including engineering investigation,efficient reinforcement,drainage,monitoring and urgent strength supplement,and hoped to be extensively applicable in the reinforcement of high-steep slopes.
基金Project supported by the National Natural Science Foundation of China (No. 10772129)
文摘Based on the Timoshenko beam theory, the finite-deflection and the axial inertia are taken into account, and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills, the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case, a shock wave solution is given. The small perturbations are further introduced, arising from the damping and the external load to an original Hamilton system, and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.
文摘In the paper,the analytic static deflection solutions of uniform cantilever beams resting on nonlinear elastic rotational boundary are developed by the Modified Adomian Decomposition Method(MADM).If the applied force function is an analytic function,then the deflection function can be derived and expressed in Maclaurin series.A recurrence relation for the coefficients of the Maclaurin series is derived.It is shown that the proposed solution method is accurate and efficient.The solution method can be successfully applied to the uniform cantilever beam and non-linear elastic rotational boundary problem.
基金supported by the National Natural Science Foundation of China (Grant No 60578015)the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institute of China (2003-2008)the National Key Opening Experiment Foundation of Laser Technology of China (Grant No 2005)
文摘Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compared with experimental results obtained by using a fibre-optic diagnostic technique based on optical beam deflection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. It is observed that the increasing of viscosity decreases the maximum bubble radii but increases the minimum bubble radii and the oscillation time. These experimental results are consistent with numerical results.
文摘The solution and computational aspects on nonlinear deflection of Yongjiang Railway Bridge in Ningbo were investigated. An approximate iteration algorithm on nonlinear governing equation was presented, and the obtained results show that, if altitude difference and span of the riverbanks are taken as 5 meters and 100 meters, respectively, the maximum gradient in the middle of the bridge exceeds 5%, much larger than maximum allowance gradient in railway design code. Therefore, a new solution scheme for decreasing gradient of the bridge is put forward, that is, the altitude difference between two riverbanks can be decreased to about 1/10 of the initial magnitude by building roadbeds with 0.5% gradient and 1 kilometer length at two riverbanks. As a direct result, the deflection gradient of the railway bridge is much reduced and the value is between 0.5% similar to 0.6%.