In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,...In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.展开更多
A pulse generator with a voltage rise time of~1.5 ns and voltage amplitude variable from 30 kV to 200 kV was designed for generating runaway electron beams in atmospheric pressure air with different interelectrode ga...A pulse generator with a voltage rise time of~1.5 ns and voltage amplitude variable from 30 kV to 200 kV was designed for generating runaway electron beams in atmospheric pressure air with different interelectrode gaps.The influence of the voltage amplitude and gap length on the generation was studied.In the gas diode geometry under study,the gap voltage at which the generation of a runaway electron beam begins was determined.Decreasing the voltage pulse amplitude does not increase the beam current pulse width measured with a time resolution of~0.1 ns.It is shown that the escape of beam electrons to the downstream of the foil is sync in time with the voltage drop across the gap,and that the delay of beam current generation increases gradually from 1.1 ns to 2.6 ns as the voltage pulse amplitude across the gap decreases from~100 kV to 40 kV.展开更多
Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable mag...Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable magnetic field is proposed for the characterization of electron energy spectrum with a precision better than 10% for the entire energy range from 0.5 GeV to 38 GeV. The expected precision in the measurement of the electron energy is calculated as a function of the magnetic field, of the electron energy and of the magnet length. To outline the advantages offered by a pulsed electromagnet with high magnetic fields, the mass and the electric power lost in the coils of a 4 m long electromagnet with continuous current and Iron yoke are calculated.展开更多
基金Project supported by CAST Innovation Fund (Grant No.CAST-BISEE2019-040)。
文摘In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.
基金Project supported by Russian Foundation for Basic Research (12-08-91150-GFEN_a), National Natural Science Foundation of China (51222701, 51207154, 51211120183), National Basic Research Program of China (973 Program) (20llCB209402), Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University (EIPEI2204), Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (2012TtG0021).
文摘A pulse generator with a voltage rise time of~1.5 ns and voltage amplitude variable from 30 kV to 200 kV was designed for generating runaway electron beams in atmospheric pressure air with different interelectrode gaps.The influence of the voltage amplitude and gap length on the generation was studied.In the gas diode geometry under study,the gap voltage at which the generation of a runaway electron beam begins was determined.Decreasing the voltage pulse amplitude does not increase the beam current pulse width measured with a time resolution of~0.1 ns.It is shown that the escape of beam electrons to the downstream of the foil is sync in time with the voltage drop across the gap,and that the delay of beam current generation increases gradually from 1.1 ns to 2.6 ns as the voltage pulse amplitude across the gap decreases from~100 kV to 40 kV.
文摘Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable magnetic field is proposed for the characterization of electron energy spectrum with a precision better than 10% for the entire energy range from 0.5 GeV to 38 GeV. The expected precision in the measurement of the electron energy is calculated as a function of the magnetic field, of the electron energy and of the magnet length. To outline the advantages offered by a pulsed electromagnet with high magnetic fields, the mass and the electric power lost in the coils of a 4 m long electromagnet with continuous current and Iron yoke are calculated.