Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these method...Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.展开更多
文摘Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.