期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Multi-domain equivalent method for prediction of elastic modulus of complex fractured rock mass
1
作者 JIAO Feng-yu WANG Hui-dong +2 位作者 LI Tuo CHEN Yun MA Guo-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第3期859-872,共14页
Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the d... Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the deformation properties of complex fractured rock mass.It comprehends both the advantages of the discrete fracture network model and the equivalent continuum model to capture the features of discontinuities explicitly while reducing computational intensity.The complex fracture network is stochastically split into a number of subfracture networks according to the domain,length or angle.An analytical solution is derived to infer theoretically the relationship between the elastic moduli of the original complex fractured rock mass and the split subfractured rock masses by introducing a correction term based on the deformation superposition principle.Numerical simulations are conducted to determine the elastic moduli of split subfractured rock masses using universal distinct element code(UDEC),while the elastic modulus of the original model is estimated based on the currently proposed analytical relationship.The results show that the estimation accuracy with the current domainbased splitting model is far superior compared to those with the other two splitting models.Thus,the estimation method of elastic modulus of complex fractured rock mass based on domain splitting mode of fracture network is identified as the multi-domain equivalent method proposed in this paper.The reliability of this method is evaluated,and its high computational efficiency is demonstrated through exemplification with regard to different geometric configurations for stochastically artificial discrete fracture network.The proposed multi-domain equivalent method constructs the theoretical framework except for the regression analysis hypothesis compared to the density-reduced model equivalent method. 展开更多
关键词 Fractured rock masses Discrete fracture network rock mass deformability Multi-domain equivalent method
下载PDF
Deformations of surface and rock mass in salt mines of Southern Poland 被引量:2
2
作者 J .Szewczyk G. Kortas 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期310-314,共5页
关键词 rock Deformations of surface and rock mass in salt mines of Southern Poland
下载PDF
FLUID-ROCK INTERACTION AND MASS BALANCE IN DEFORMED ROCKS OF THE IRTISH TECTONIC ZONE,NORTHERN XINJIANG,CHINA
3
《Geotectonica et Metallogenia》 1994年第Z2期31-33,共3页
关键词 rock FLUID-rock INTERACTION AND mass BALANCE IN DEFORMED rockS OF THE IRTISH TECTONIC ZONE NORTHERN XINJIANG CHINA SiO MNO
下载PDF
Anisotropy of strength and deformability of fractured rocks 被引量:5
4
作者 Majid Noorian Bidgoli Lanru Jing 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期156-164,共9页
Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geom... Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non- regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con- taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu- merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and su^zestions for future study are also oresented. 展开更多
关键词 Anisotropy Strength criterion Deformation behavior Numerical experimentsFractured rock mass Discrete element method (DEM)Discrete fracture network (DFN)
下载PDF
Fracture distribution in overburden strata induced by underground mining
5
作者 Wenli Yao Enzhi Wang +1 位作者 Xiaoli Liu Ran Zhou 《Deep Underground Science and Engineering》 2022年第1期58-64,共7页
Coal-mining activities give rise to a series of ecological environmental problems,such as ground settlement and groundwater pollution.In fact,they are mainly caused by mining-induced fractures.Hence,it is necessary to... Coal-mining activities give rise to a series of ecological environmental problems,such as ground settlement and groundwater pollution.In fact,they are mainly caused by mining-induced fractures.Hence,it is necessary to study the mining-induced fracture distribution to identify the behavior of rock mass movement.However,the fractures in overburden strata cannot be directly measured owing to the special condition.Therefore,the majority of previous studies are based on experiments or experience.For this reason,this study first used a discrete element method to simulate the shape of mining-induced fractures in overburden strata.Then,a geophysical tool of transient electromagnetic method(TEM)was used to investigate the mining-induced fracture distribution.Based on the low-resistivity anomaly area,the water-rich area in overburden strata was analyzed to be mainly caused by fracture seepage.Through the mutual authentication between numerical simulation and TEM results,the mining-induced fractures in overburden strata were explored.This study can enhance the understanding of mining-induced fracture distribution on the one hand and guarantee the coal mining safety on the other,thus guiding the coordinated development between coal mining and environmental protection. 展开更多
关键词 groundwater seepage mining-induced fracture numerical simulation rock mass deformation TEM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部