期刊文献+
共找到7,321篇文章
< 1 2 250 >
每页显示 20 50 100
A Deformable Network with Attention Mechanism for Retinal Vessel Segmentation
1
作者 Xiaolong Zhu Wenjian Li +2 位作者 Weihang Zhang Dongwei Li Huiqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期186-193,共8页
The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segm... The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network. 展开更多
关键词 retinal vessel segmentation deformable convolution attention mechanism deep learning
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
2
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 deformable catalytic material Micro-nanostructures evolution mechanical flexibility Hydrogen evolution reaction
下载PDF
A molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures
3
作者 Zihao Yu Hongyu Wang +2 位作者 Ligang Sun Zhihui Li Linli Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期349-355,共7页
Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions betw... Molecular dynamics simulations are performed to investigate the mechanical behavior of nanotwinned NiCo-based alloys containing coherent L12 nano-precipitates at different temperatures,as well as the interactions between the dislocations and nano-precipitates within the nanotwins.The simulation results demonstrate that both the yield stress and flow stress in the nanotwinned NiCo-based alloys with nano-precipitates decrease as the temperature rises,because the higher temperatures lead to the generation of more defects during yielding and lower dislocation density during plastic deformation.Moreover,the coherent L12 phase exhibits excellent thermal stability,which enables the hinderance of dislocation motion at elevated temperatures via the wrapping and cutting mechanisms of dislocations.The synergistic effect of nanotwins and nano-precipitates results in more significant strengthening behavior in the nanotwinned NiCo-based alloys under high temperatures.In addition,the high-temperature mechanical behavior of nanotwinned NiCo-based alloys with nano-precipitates is sensitive to the size and volume fraction of the microstructures.These findings could be helpful for the design of nanotwins and nano-precipitates to improve the high-temperature mechanical properties of NiCo-based alloys. 展开更多
关键词 NiCo-based alloys high temperature nano-precipitate NANOTWINS molecular dynamics simulation mechanical behavior deformation mechanism dislocations
下载PDF
Microstructural evolution and deformation mechanisms of superplastic aluminium alloys:A review
4
作者 Guo-tong ZOU Shi-jie CHEN +3 位作者 Ya-qi XU Bao-kun SHEN Yu-jia ZHANG Ling-ying YE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3069-3092,共24页
Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the m... Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys. 展开更多
关键词 uminium alloys SUPERPLASTICITY superplastic deformation mechanism grain boundary sliding micro-structural evolution
下载PDF
Deformation mechanism and softening effect of extruded AZ31 magnesium alloy sheet at moderate temperatures 被引量:7
5
作者 刘俊伟 陈振华 +1 位作者 陈鼎 李贵发 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1329-1335,共7页
The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation acti... The flow stress behavior of extruded AZ31 magnesium alloy sheet was investigated by means of compression tests at temperatures between 473 and 523 K and strain rates ranging from 0.001 to 1.0 s-1. The deformation activation energy of the sheet in extrusion direction (ED) was calculated, and the relationship between the softening effect and deformation mechanism was elucidated by optical microscopy and transmission electron microscopy. The results show that when the extruded AZ31 magnesium alloy samples were compressed at moderate temperatures in ED direction, the deformation activation energy is 174.18 kJ/mol, which means that dynamic recrystallization (DRX) is the main softening effect and is controlled by cross slip of thermal active dislocation. Dislocation slip is the main deformation mechanism in moderate-temperature deformation process except twinning. The main DRX effect at moderate temperatures can be considered to be continuous dynamic recrystallization accommodated with twinning DRX. 展开更多
关键词 AZ31 magnesium alloy deformation mechanism active energy dynamic recrystallization
下载PDF
基于改进Deformable-DETR的水下图像目标检测方法 被引量:2
6
作者 崔颖 韩佳成 +1 位作者 高山 陈立伟 《应用科技》 CAS 2024年第1期30-36,91,共8页
针对由于水下复杂环境造成的目标检测效果较差、检测精度较低的问题,基于Deformable-DETR算法提出一种改进的水下目标检测算法Deformable-DETR-DA。使用空间注意力模块结合标准Transformer块设计了一个用于增加模型深度的深度特征金字塔... 针对由于水下复杂环境造成的目标检测效果较差、检测精度较低的问题,基于Deformable-DETR算法提出一种改进的水下目标检测算法Deformable-DETR-DA。使用空间注意力模块结合标准Transformer块设计了一个用于增加模型深度的深度特征金字塔(deep feature pyramid networks,DFPN)模块,将其嵌入到模型中提高模型对深层纹理信息的提取能力。使用注意力引导的方式对原模型中编码器部分进行改进,加强了对特征信息的聚合能力,提高了模型在复杂环境下的检测能力。针对URPC数据集,模型各交并比尺度的平均准确度(average precision,AP)为39.5%,相比原模型提升1%,与一些DETR(detection transformer)类的模型相比,不同目标尺度的平均准确度均有1%~4%左右的提高,表明改进的模型能够很好解决复杂环境的水下目标检测的问题。本文提出的模型可作为其他水下目标检测模型设计的参考。 展开更多
关键词 水下光学图像 deformable-DETR 目标检测 TRANSFORMER 注意力机制 深度学习 图像处理 残差网络
下载PDF
Deformation mechanisms of Mg-3Al-1Zn alloy by polycrystal plasticity modeling 被引量:1
7
作者 尹德良 刘金强 吴冰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2188-2194,共7页
A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast a... A polycrystal plasticity model was developed to analyze the room-temperature deformation behaviors of Mg-3A1-1Zn alloy(AZ31).The uniaxial tension and compression tests at room temperature were conducted using cast and extruded AZ31 rods with different textures and combined with the proposed model to reveal the deformation mechanisms.It is shown that,different flow curves of two specimens under tension and compression tests can be simulated by this model.The flow curves of AZ31 extrusions exhibit different shapes for tension and compression due to different activities of tensile twinning and pyramidalc+a slip.The metallographic and TEM observations showed the equal twinning activities at the initial stage in tension and compression tests and the occurrence of pyramidalc+a slip in compression of as-cast Mg-3A1-1Zn alloy with increasing the strain,which is consistent with the simulated results by the proposed model. 展开更多
关键词 Mg alloy deformation mechanism polycrystal plasticity model TEXTURE
下载PDF
Thermal deformation behavior and mechanism of intermetallic alloy Ti2AlNb 被引量:5
8
作者 张钦差 陈明和 +3 位作者 王辉 王宁 欧阳金栋 李新孝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期722-728,共7页
The deformation behavior and mechanism of Ti2AlNb-based alloy were experimentally investigated at elevated temperatures. Firstly, the stress?strain relationships at different temperatures and strain rates were investi... The deformation behavior and mechanism of Ti2AlNb-based alloy were experimentally investigated at elevated temperatures. Firstly, the stress?strain relationships at different temperatures and strain rates were investigated via uniaxial tensile testing. Then, formability data, as determined by examining the deep drawing and bending abilities, were obtained through limiting draw ratio (LDR) and bending tests. Finally, metallographic experiments and fracture morphology investigations were conducted to examine the thermal deformation mechanism of the alloy. The results showed that as the temperature increased, the total elongation increased from 13.58% to 97.82% and the yield strength decreased from 788 to 80 MPa over the temperature range from 750 to 950 °C at a strain rate 0.001 s?1. When the temperature reached 950 °C, the strain rate was found to have a great influence on the deformation properties. The plastic formability of the sheet metal was significantly improved and a microstructuraltransformation of O toB2 andα2 occurred in this temperature region, revealing the deformation mechanism of its plasticity. 展开更多
关键词 Ti2AlNb-based alloy deformation behavior deformation mechanism FORMABILITY
下载PDF
DEFORMATION AND FRACTURE MECHANISMS OF TWO-PHASE TiAl-BASED ALLOYS WITH FULLY LAMELLAR MICROSTRUCTURE 被引量:7
9
作者 Y. G .Zhang, C. Q. Chen (Beijing University of Aeronautics and Astronautics, Beijing 100083, China)Q. Xu (Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences. Beijing,China)M. C. Chaturvedi (The University of Manitoba, Winnipeg, Manito 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期359-368,共10页
A two-phase TiAl-based alloy with fully lamellar structure has been deformed al room temperature and the deformed microstructures have been examined in dtails by optical microscopy(OM), scanning electron microscopy(... A two-phase TiAl-based alloy with fully lamellar structure has been deformed al room temperature and the deformed microstructures have been examined in dtails by optical microscopy(OM), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) . Deformation mechanisms in the γ-TiAl phase has been defined and the role of grain boundaries in the deformation and fracture has been assessed Some of the mechanisms of interactions between twinning or gliding dislocations and three types of γ γ domain boundaries or γ α_2 interface in a lamellar grain have been identified and resistance of the various domain boundaries or the interface to the propagation of twinning has been evaluated 展开更多
关键词 TIAL deformation mechanism LAMELLAE TWINNING
下载PDF
Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates 被引量:8
10
作者 Guo, Qingmiao Li, Defu +3 位作者 Peng, Haijian Guo, Shengli Hu, Jie Du, Peng 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期215-220,共6页
The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot... The effects of strain rates on the hot working characteristics and nucleation mechanisms of dynamic recrystallization (DRX) were studied by optical microscopy and electron backscatter diffraction (EBSD) technique. Hot compression tests were conducted using a Gleeble-1500 simulator at a true strain of 0.7 in the temperature range of 1000 to 1150 °C and strain rate range of 0.01 to 10.00 s?1. It is found that the size and volume fraction of the DRX grains in hot-deformed Inconel 625 superalloy firstly decrease and then increase with increasing strain rate. Meanwhile, the nucleation mechanism of DRX is closely related to the deformation strain rate due to the deformation thermal effect. The discontinuous DRX (DDRX) with bulging of original grain boundaries is the primary nucleation mechanism of DRX, while the continuous DRX (CDRX) with progressive subgrain rotation acts as a secondary nucleation mechanism. The twinning formation can activate the nucleation of DRX. The effects of bulging of original grain boundaries and twinning formation are firstly gradually weakened and then strengthened with the increasing strain rate due to the deformation thermal effect. On the contrary, the effect of subgrain rotation is firstly gradually strengthened and then weakened with the increasing strain rate. 展开更多
关键词 nucleation mechanisms dynamic recrystallization Inconel 625 superalloy deformation strain rate
下载PDF
Numerical investigation of the deformation mechanism of a bubble or a drop rising or falling in another fluid 被引量:4
11
作者 王含 张振宇 +2 位作者 杨永明 胡越 张慧生 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第10期3847-3855,共9页
A numerical method for simulating the motion and deformation of an axisymmetric bubble or drop rising or falling in another infinite and initially stationary fluid is developed based on the volume of fluid (VOF) met... A numerical method for simulating the motion and deformation of an axisymmetric bubble or drop rising or falling in another infinite and initially stationary fluid is developed based on the volume of fluid (VOF) method in the frame of two incompressible and immiscible viscous fluids under the action of gravity, taking into consideration of surface tension effects. A comparison of the numerical results by this method with those by other works indicates the validity of the method. In the frame of inviseid and incompressible fluids without taking into consideration of surface tension effects, the mechanisms of the generation of the liquid jet and the transition from spherical shape to toroidal shape during the bubble or drop deformation, the increase of the ring diameter of the toroidal bubble or drop and the decrease of its cross-section area during its motion, and the effects of the density ratio of the two fluids on the deformation of the bubble or drop are analysed both theoretically and numerically. 展开更多
关键词 BUBBLE DROP BUOYANCY deformation mechanism VOF method
下载PDF
Hot deformation behavior and globularization mechanism of Ti-6Al-4V-0.1B alloy with lamellar microstructure 被引量:7
12
作者 Yang Yu Bai-Qing Xiong +1 位作者 Song-Xiao Hui Wen-Jun Ye 《Rare Metals》 SCIE EI CAS CSCD 2013年第2期122-128,共7页
Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and str... Hot deformation behavior and globularization mechanism of Ti6A14V0.1B alloy with lamellar micro structure were quantitatively studied through isothermal compression tests with the temperature range of 850950 ℃and strain rate range of 0.011.00 s1. The results show that the peak flow stress and steady stress are sensitive to the strain rate and temperature. The value of deformation activation energy is 890.49 kJmo11 in (a+β) region. Dynamic recrystallization is the major deformation mecha nism. Flow softening is dominated by dynamic recrystallization at 850950 ℃. TiB particles promote the recrystallization of laths. Globularization processes consist of four steps: for mation of subgrain after dynamic recovery in a plates; subgrain boundary migration caused by interracial instability; interfacial migration promoting phase wedge into a phase; disintegrating of a laths by diffusion processes; and grain boundary sliding. Globularization mechanisms during hot deformation processes of the Ti6A14V0.1B alloy with lamellar structure are continuous dynamic recrystallization. 展开更多
关键词 Ti-6A1-4V-0.1B Hot deformation Lamellarmicrostructure Globularization mechanism
下载PDF
Main Structural Styles and Deformation Mechanisms in the Northern Sichuan Basin,Southern China 被引量:5
13
作者 TANG Liangjie GUO Tonglou +2 位作者 JIN Wenzheng YU Yixin LI Rufeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期543-553,共11页
The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt b... The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon. 展开更多
关键词 structural style deformation mechanism detachment layer salt-related strucrure hydrocarbon accumulation northern Sichuan Basin
下载PDF
Deformation Mechanism and Stability of a Rocky Slope 被引量:4
14
作者 黄润秋 肖华波 +1 位作者 巨能攀 赵建军 《Journal of China University of Geosciences》 SCIE CAS CSCD 2007年第1期77-84,共8页
A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appear... A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appeared deformation and tensile crack either on the surface or on the afteredge of the slope during excavation, and under a platform (elev. 488 m), two levels of slopes collapsed on the downriver side. Based on the investigation in situ and the analysis of the geological structure, the conceptual model of deformation and failure mechanism was erected for this slope. Furthermore, the deformation characteristics were studied with FLAC^3D numerical simulation. Comprehensive analysis shows that the whole deformation of the slope is unloading rebound in certain depth scope and the whole body does not slide along any weak interlayer. In addition, two parts with prominent local deformation in the shallow layer of the slope show the models of "creep sfiding-tensile cracking" and "slidlng-tensile cracking", respectively. Based on the above analysis, the corresponding project of support and reinforcement is proposed to make the slope more stable. 展开更多
关键词 high rock slope deformation and failure mechanism STABILITY SUPPORT
下载PDF
Hot tensile deformation behavior and globularization mechanism of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy 被引量:10
15
作者 Hui-jun ZHAO Bao-yu WANG +1 位作者 Dong-ying JU Guo-jin CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2449-2459,共11页
The hot deformation behavior,microstructure evolution and fracture characteristics of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy were investigated by isothermal tensile tests.Results reveal that flow softening is... The hot deformation behavior,microstructure evolution and fracture characteristics of bimodal microstructured Ti-6Al-2Zr-1Mo-1V alloy were investigated by isothermal tensile tests.Results reveal that flow softening is caused by dynamic globularization of the bimodal microstructure,which also results in a relatively high stress exponent and thermal activation energy.The corresponding SEM,EBSD and TEM observations indicate that the dynamic globularization at750and800℃is accomplished by the formation ofα/αsub-grain boundary and penetration of theβphase.However,dynamic recrystallization(DRX)is the main globularization mechanism at850℃,which was proved by the generation of fine grains with a necklace-like character due to the transformation of low-angle boundaries(LABs)into high-angle boundaries(HABs).With an increase in the deformation temperature or a decrease in the strain rate,the fracture mechanism changes from microvoid coalescence to intergranular fracture. 展开更多
关键词 titanium alloy bimodal microstructure deformation behavior globularization mechanism fracture morphology
下载PDF
Anchoring effect and energy-absorbing support mechanism of large deformation bolt 被引量:13
16
作者 ZHAO Tong-bin XING Ming-lu +2 位作者 GUO Wei-yao WANG Cun-wen WANG Bo 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期572-581,共10页
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th... To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree. 展开更多
关键词 rock burst large deformation bolt numerical simulation pull-out test anchoring effect energy-absorbing mechanism
下载PDF
Deformation mechanism of roadways in deep soft rock at Hegang Xing’an Coal Mine 被引量:21
17
作者 Yang Xiaojie Pang Jiewen +4 位作者 Liu Dongming Liu Yang Tian Yihong Ma Jiao Li Shaohua 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期307-312,共6页
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ... Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock. 展开更多
关键词 Deep Clay mineral Engineering soft rock type deformation mechanics mechanism
下载PDF
Coupling mechanism between mining-induced deformation and permeability of coal 被引量:3
18
作者 Xue Dongjie Zhou Hongwei +1 位作者 Wang Chaosheng Li Dongping 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期783-787,共5页
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th... The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit. 展开更多
关键词 Mining-induced mechanical behavior Coal deformation SEEPAGE Coupling test
下载PDF
Time-dependent squeezing deformation mechanism of tunnels in layered soft-rock stratum under high geo-stress 被引量:5
19
作者 CHEN Zi-quan HE Chuan +1 位作者 WANG Jun MA Chun-chi 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1371-1390,共20页
Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of ... Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used. 展开更多
关键词 deformation mechanism Layered soft rock tunnel High geostress Large squeezing deformation Rheological damage model
下载PDF
Preparatory mechanism of Ms8.0 Wenchuan earthquake evidenced by crust-deformation data 被引量:3
20
作者 Bo Wanju Yang Guohua Zhan Wei Zhang Fengshuang Wan Wenni Zhang Licheng 《Geodesy and Geodynamics》 2011年第2期23-28,共6页
Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in... Some crustal-deformation data related to the Ms8.0 Wenchuan in 2008, was described and a model that is capable of explaining the observed deformation features is presented. The data include : pre-earthquake uplift in an area south of the epicenter obtained by repeated-leveling measurements ; pre-earthquake horizontal deformation by GPS observation during two periods in Sichuan-Yunnan area;vertical deformation along a short cross-fault leveling line in the epicenter area; and co-seismic near-field vertical and horizontal crustal-move- ment data by GPS. The model is basically "elastic-rebound", but involves a zone between two local faults that was squeezed out at the time of earthquake. : 展开更多
关键词 Wenchuan Ms8.0 earthquake earthquake generation mechanism deformation LEVELING GPS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部