The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy ...The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.展开更多
This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total str...This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite.展开更多
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated...An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated laser beam creates a circular spot on the screen, meanwhile, the industrial camera captures the tiny deformation of the crustal fault by monitoring the change of the spot position. This method significantly reduces the cost of equipment and labor, provides daily sampling to ensure high continuity of data. A prototype of the automatic monitoring system is developed, and a repeatability test indicates that the error of spot jitter can be minimized by consecutive samples. Meanwhile, the environmental correction model is determined to ensure that environmental changes do not disturb the system. Furthermore, the automatic monitoring system has been applied at the deformation monitoring station(KJX02) of China Beishan underground research laboratory, where continuous deformation monitoring is underway.展开更多
The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it diffi...The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.展开更多
The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine...The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.展开更多
Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring c...Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.展开更多
The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comp...The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comprehensively reflect the deformation of high-fill during and after construction.In this paper,we have first designed and installed an integrated wireless remote monitoring system for high-fill to achieve real-time dynamic monitoring of settlement,pore water pressure and soil pressure of the fill foundation.Based on the monitoring results of nearly one year of the construction period and two years after construction,it was found that the deformation amount and deformation rate of the high-fill foundation showed a non-linear growth relationship with the filling rate and filling height.The settlement deformation of the high-fill foundation during the loading period was mainly dominated by the original foundation soil,accounting for 54.4%of the total settlement on average;the settlement deformation during the post-construction period was mainly dominated by the filling body,accounting for 77.04%of the total settlement on average,and the settlement deformation during the post-construction period mainly occurred in the first year after construction.The analysis of the deformation mechanism suggests that the deformation of the filling body is dominated by exhaust consolidation during the loading period and drainage consolidation during the post-construction period;the deformation of the original foundation soil is dominated by drainage consolidation during the loading period and drainage consolidation develops slowly during the post-construction period.It is recommended that the original foundation should be reinforced before the large area filling construction,and that the filling rate should be strictly controlled during construction.The research results can provide a scientific basis for deformation calculation and stability assessment of high-fill foundations.展开更多
This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation the...This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation theorem for thermoviscoelastic solids (TVES) matter without memory. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics. This mathematical model is thermodynamically and mathematically consistent and is ideally suited to study nonlinear dynamics of TVES and dynamic bifurcation and is used in the work presented in this paper. The finite element formulations are constructed for obtaining the solution of the initial value problems (IVPs) described by the mathematical models. Both space-time coupled as well as space-time decoupled finite element methods are considered for obtaining solutions of the IVPs. Space-time coupled finite element formulations based on space-time residual functional (STRF) that yield space-time variationally consistent space-time integral forms are considered. This approach ensures unconditional stability of the computations during the entire evolution. In the space-time decoupled finite element method based on Galerkin method with weak form for spatial discretization, the solutions of nonlinear ODEs in time resulting from the decoupling of space and time are obtained using Newmark linear acceleration method. Newton’s linear method is used to obtain converged solution for the nonlinear system of algebraic equations at each time step in the Newmark method. The different aspects of the deformation physics leading to the factors that influence nonlinear dynamic response and dynamic bifurcation are established using the proposed mathematical model, the solution method and their validity is demonstrated through model problem studies presented in this paper. Energy methods and superposition techniques in any form including those used in obtaining solutions are neither advocated nor used in the present work as these are not supported by calculus of variations and mathematical classification of differential operators appearing in nonlinear dynamics. The primary focus of the paper is to address various aspects of the deformation physics in nonlinear dynamics and their influence on dynamic bifurcation phenomenon using mathematical models strictly based on CBL of CCM using reliable unconditionally stable space-time coupled solution methods, which ensure solution accuracy or errors in the calculated solution are always identified. Many model problem studies are presented to further substantiate the concepts presented and discussed in the paper. Investigations presented in this paper are also compared with published works when appropriate.展开更多
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d...The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.展开更多
Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into...Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.展开更多
The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated un...The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature.展开更多
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr...Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A...The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.展开更多
The basic signal model of deformation monitoring with GPS was introduced and the main problems of GPS deformation monitoring in mining area were discussed. For the problem of noise signal extraction in GPS deformation...The basic signal model of deformation monitoring with GPS was introduced and the main problems of GPS deformation monitoring in mining area were discussed. For the problem of noise signal extraction in GPS deformation monitoring, the Kalman-EMD method was proposed to obtain the effective deformation signal. The reliability and effectiveness of the methodology were tested and verified by analog signal. The results of experiment in Mongolia show that the accuracy of the proposed GPS deformation monitoring model is equivalent to that of level method.展开更多
The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystalli...The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystallization critical stress, saturated stress, dynamic recovery volume fraction and dynamic recrystallization volume fraction were determined. According to the processing map, the instability regions occur in regions of 400?450 °C, 0.001?0.05 s?1 and 450?750 °C, 0.05?1 s?1. The deformation mechanism in the stability region is dynamic recrystallization. The flow stress was predicted. The results also show that the true stress–true strain curves predicted by the extracted model are in good agreement with the experimental results.展开更多
Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidenc...Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.展开更多
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif...To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.展开更多
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
基金supported by the National Natural Science Foundation of China(Grant Nos.42264004,42274033,and 41904012)the Open Fund of Hubei Luojia Laboratory(Grant Nos.2201000049 and 230100018)+2 种基金the Guangxi Universities’1,000 Young and Middle-aged Backbone Teachers Training Program,the Fundamental Research Funds for Central Universities(Grant No.2042022kf1197)the Natural Science Foundation of Hubei(Grant No.2020CFB282)the China Postdoctoral Science Foundation(Grant Nos.2020T130482,2018M630879)。
文摘The deformation monitoring of long-span railway bridges is significant to ensure the safety of human life and property.The interferometric synthetic aperture radar(In SAR)technology has the advantage of high accuracy in bridge deformation monitoring.This study monitored the deformation of the Ganjiang Super Bridge based on the small baseline subsets(SBAS)In SAR technology and Sentinel-1A data.We analyzed the deformation results combined with bridge structure,temperature,and riverbed sediment scouring.The results are as follows:(1)The Ganjiang Super Bridge area is stable overall,with deformation rates ranging from-15.6 mm/yr to 10.7 mm/yr(2)The settlement of the Ganjiang Super Bridge deck gradually increases from the bridge tower toward the main span,which conforms to the typical deformation pattern of a cable-stayed bridge.(3)The sediment scouring from the riverbed cause the serious settlement on the bridge’s east side compared with that on the west side.(4)The bridge deformation negatively correlates with temperature,with a faster settlement at a higher temperature and a slow rebound trend at a lower temperature.The study findings can provide scientific data support for the health monitoring of long-span railway bridges.
基金financially supported by the National Natural Science Foundation of China(Grant No.52074269).
文摘This paper presents an improved strain-softening constitutive model considering the effect of crack deformation based on the triaxial cyclic loading and unloading test results.The improved model assumes that total strain is a combination of plastic,elastic,and crack strains.The constitutive relationship between the crack strain and the stress was further derived.The evolutions of mechanical parameters,i.e.strength parameters,dilation angle,unloading elastic modulus,and deformation parameters of crack,with the plastic strain and confining pressure were studied.With the increase in plastic strain,the cohesion,friction angle,dilation angle,and crack Poisson's ratio initially increase and subsequently decrease,and the unloading elastic modulus and the crack elastic modulus nonlinearly decrease.The increasing confining pressure enhances the strength and unloading elastic modulus,and decreases the dilation angle and Poisson's ratio of the crack.The theoretical triaxial compressive stress-strain curves were compared with the experimental results,and they present a good agreement with each other.The improved constitutive model can well reflect the nonlinear mechanical behavior of granite.
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.
基金supported by Earthquake Sciences Spark Programs of China Earthquake Administration(No.XH22020YA)Science Innovation Fund granted by the First Monitoring and Application Center of China Earthquake Administration(No.FMC202309).
文摘An automatic monitoring method of the 3-D deformation is presented for crustal fault based on laser and machine vision. The laser source and screen are independently set up in the headwall and footwall, the collimated laser beam creates a circular spot on the screen, meanwhile, the industrial camera captures the tiny deformation of the crustal fault by monitoring the change of the spot position. This method significantly reduces the cost of equipment and labor, provides daily sampling to ensure high continuity of data. A prototype of the automatic monitoring system is developed, and a repeatability test indicates that the error of spot jitter can be minimized by consecutive samples. Meanwhile, the environmental correction model is determined to ensure that environmental changes do not disturb the system. Furthermore, the automatic monitoring system has been applied at the deformation monitoring station(KJX02) of China Beishan underground research laboratory, where continuous deformation monitoring is underway.
基金supported by the National Natural Science Foundation of China(Grants No.52079049,U2243223,51609074,51739003,and 51579086).
文摘The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.
基金funding from the National Natural Science Foundation of China(No.41572308)。
文摘The scientific and fair positioning of monitoring locations for surface displacement on slopes is a prerequisite for early warning and forecasting.However,there is no specific provision on how to effectively determine the number and location of monitoring points according to the actual deformation characteristics of the slope.There are still some defects in the layout of monitoring points.To this end,based on displacement data series and spatial location information of surface displacement monitoring points,by combining displacement series correlation and spatial distance influence factors,a spatial deformation correlation calculation model of slope based on clustering analysis was proposed to calculate the correlation between different monitoring points,based on which the deformation area of the slope was divided.The redundant monitoring points in each partition were eliminated based on the partition's outcome,and the overall optimal arrangement of slope monitoring points was then achieved.This method scientifically addresses the issues of slope deformation zoning and data gathering overlap.It not only eliminates human subjectivity from slope deformation zoning but also increases the efficiency and accuracy of slope monitoring.In order to verify the effectiveness of the method,a sand-mudstone interbedded CounterTilt excavation slope in the Chongqing city of China was used as the research object.Twenty-four monitoring points deployed on this slope were monitored for surface displacement for 13 months.The spatial location of the monitoring points was discussed.The results show that the proposed method of slope deformation zoning and the optimized placement of monitoring points are feasible.
文摘Deformation can directly reflect the working behavior of the dam,so determining the deformation monitoring control value can effectively monitor the safety of dam operation.The traditional dam deformation monitoring control value only considers the single measuring point.In order to overcome the limitation,this paper presents a new method to determine the monitoring control value for concrete gravity dam based on the deformations of multi-measuring points.A dam’s comprehensive deformation displacement is determined by the measured values at different measuring points on the positive inverted vertical line and the corresponding weight of eachmeasuring point.The projection pursuit method(PPM)combined with the grey wolf optimization(GWO)algorithm is used to determine the weight of each measuring point according to the spatial correlation distribution characteristics of dam deformation.The peaks over threshold(POT)model based on the extreme value theory is adopted to determine the monitoring control value with the obtained dam comprehensive deformation displacement.In addition,the POTmodel is improved with the automatic threshold determinationmethod based on the 3σcriterion in probability theory and the GWO algorithm,which can avoid subjectivity and randomness in determining the threshold.The results of the engineering application show the feasibility and applicability of the proposed method.
基金supported by the Youth Science and Technology Fund Program in Gansu Province(20JR5RA434 and 20JR10RA200)National Natural Science Foundation of China(52168051)+1 种基金Gansu Province University Innovation Fund Project(2020A031)Gansu Provincial Science and Technology Plan Fund Project(22CX8GA112)。
文摘The spatial and temporal deformation patterns and deformation control indicators of highfill foundations directly affect the design,construction and operational safety of high-fill projects.In situ monitoring can comprehensively reflect the deformation of high-fill during and after construction.In this paper,we have first designed and installed an integrated wireless remote monitoring system for high-fill to achieve real-time dynamic monitoring of settlement,pore water pressure and soil pressure of the fill foundation.Based on the monitoring results of nearly one year of the construction period and two years after construction,it was found that the deformation amount and deformation rate of the high-fill foundation showed a non-linear growth relationship with the filling rate and filling height.The settlement deformation of the high-fill foundation during the loading period was mainly dominated by the original foundation soil,accounting for 54.4%of the total settlement on average;the settlement deformation during the post-construction period was mainly dominated by the filling body,accounting for 77.04%of the total settlement on average,and the settlement deformation during the post-construction period mainly occurred in the first year after construction.The analysis of the deformation mechanism suggests that the deformation of the filling body is dominated by exhaust consolidation during the loading period and drainage consolidation during the post-construction period;the deformation of the original foundation soil is dominated by drainage consolidation during the loading period and drainage consolidation develops slowly during the post-construction period.It is recommended that the original foundation should be reinforced before the large area filling construction,and that the filling rate should be strictly controlled during construction.The research results can provide a scientific basis for deformation calculation and stability assessment of high-fill foundations.
文摘This paper presents the mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and the constitutive theories derived using entropy inequality and representation theorem for thermoviscoelastic solids (TVES) matter without memory. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics. This mathematical model is thermodynamically and mathematically consistent and is ideally suited to study nonlinear dynamics of TVES and dynamic bifurcation and is used in the work presented in this paper. The finite element formulations are constructed for obtaining the solution of the initial value problems (IVPs) described by the mathematical models. Both space-time coupled as well as space-time decoupled finite element methods are considered for obtaining solutions of the IVPs. Space-time coupled finite element formulations based on space-time residual functional (STRF) that yield space-time variationally consistent space-time integral forms are considered. This approach ensures unconditional stability of the computations during the entire evolution. In the space-time decoupled finite element method based on Galerkin method with weak form for spatial discretization, the solutions of nonlinear ODEs in time resulting from the decoupling of space and time are obtained using Newmark linear acceleration method. Newton’s linear method is used to obtain converged solution for the nonlinear system of algebraic equations at each time step in the Newmark method. The different aspects of the deformation physics leading to the factors that influence nonlinear dynamic response and dynamic bifurcation are established using the proposed mathematical model, the solution method and their validity is demonstrated through model problem studies presented in this paper. Energy methods and superposition techniques in any form including those used in obtaining solutions are neither advocated nor used in the present work as these are not supported by calculus of variations and mathematical classification of differential operators appearing in nonlinear dynamics. The primary focus of the paper is to address various aspects of the deformation physics in nonlinear dynamics and their influence on dynamic bifurcation phenomenon using mathematical models strictly based on CBL of CCM using reliable unconditionally stable space-time coupled solution methods, which ensure solution accuracy or errors in the calculated solution are always identified. Many model problem studies are presented to further substantiate the concepts presented and discussed in the paper. Investigations presented in this paper are also compared with published works when appropriate.
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42076217,41976074)+1 种基金the Laoshan Laboratory(No.LSKJ202203506)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202).
文摘The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.
基金This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.52021003)National Natural Science Foundation of China(Grant No.51835006)+6 种基金the National Natural Science Foundation of China(Grant Nos.52222509,52105301,U19A20103)Jilin University Science and Technology Innovative Research Team(Grant No.2020TD-03)Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZZ03)the Natural Science Foundation of Jilin Province(Grant No.20220101220JC)Education Department of Jilin Province(Grant No.JJKH20220979KJ)Graduate Innovation Fund of Jilin University(2023CX077)supported by“Fundamental Research Funds for the Central Universities.”。
文摘Flexible strain sensors are promising in sensing minuscule mechanical signals,and thereby widely used in various advanced fields.However,the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge.Herein,inspired by the hysteresis strategy of the scorpion slit receptor,a bio-inspired flexible strain sensor(BFSS)with parallel through-slit arrays is designed and fabricated.Specifically,BFSS consists of conductive monolayer graphene and viscoelastic styrene–isoprene–styrene block copolymer.Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials,BFSS can achieve both hypersensitivity and highly selective frequency response.Remarkably,the BFSS exhibits a high gage factor of 657.36,and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration.Moreover,the BFSS possesses a wide frequency detection range(103 Hz)and stable durability(1000 cycles).It can sense and recognize vibration signals with different characteristics,including the frequency,amplitude,and waveform.This work,which turns the hysteresis effect into a"treasure,"can provide new design ideas for sensors for potential applications including human–computer interaction and health monitoring of mechanical equipment.
基金the Deutsche Forschungsgemeinschaft(DFG)for financial support(MO 848/18-2)。
文摘The deformation mechanisms and dynamic recrystallization(DRX)behavior of specifically grown bicrystals with a symmetric 90°<1010>and 90°<1120>tilt grain boundary,respectively,were investigated under deformation in plane strain compression at 200℃and 400℃.The microstructures were analyzed by panoramic optical microscopy and large-area electron backscatter diffraction(EBSD)orientation mapping.The analysis employed a meticulous approach utilizing hundreds of individual,small EBSD maps with a small step size that were stitched together to provide comprehensive access to orientation and misorientation data on a macroscopic scale.Basal slip primarily governed the early stages of deformation at the two temperatures,and the resulting shear induced lattice rotation around the transverse direction(TD)of the sample.The existence of the grain boundary gave rise to dislocation pile-up in its vicinity,leading to much larger TD-lattice rotations within the boundary region compared to the bulk.With increasing temperature,the deformation was generally more uniform towards the bulk due to enhanced dislocation mobility and more uniform stress distribution.Dynamic recrystallization at 200℃was initiated in{1011}-compression twins at strains of 40%and higher.At 400℃,DRX consumed the entire grain boundary region and gradually replaced the deformed microstructure with progressing deformation.The recrystallized grains displayed characteristic orientations,such that their c-axes were perpendicular to the TD and additionally scattered between 0°and 60°from the loading axis.These recrystallized grains displayed mutual rotations of up to 30°around the c-axes of the initial grains,forming a discernible basal fiber texture component,prominently visible in the{1120}pole figure.It is noteworthy that the deformation and DRX behaviors of the two analyzed bicrystals exhibited marginal variations in response to strain and deformation temperature.
基金funding support from Rijkswaterstaat,the Netherlands,and European Union’s Horizon 2020 Research and Innovation Programme(Project SAFE-10-T under Grant No.723254)China Scholarship Council,and National Natural Science Foundation of China(Grant No.42225702).
文摘Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
文摘The flow stress behavior of ZK60 alloy at elevated temperature was investigated. The strain hardening and dynamic recrystallization of the alloy were modeled by Kocks-Meching model and Avrami equation, respectively. A new constitutive equation during hot deformation was constructed to predict the flow stress considering the dynamic recrystallization. The results show that the flow stress curves predicted by the proposed equation have high correlation coefficients with the experimental data, which confirms that the developed model is accurate and effective to establish the flow stress equation of ZK60 magnesium alloy during hot deformation. Microstructure observation shows that dynamic recovery occurs in the initial stage of hot deformation. However, the microstructure turns to recrvstallization structure as the strain increases.
基金Project(2014ZDPY29)supported by the Fundamental Research Funds for Central Universities,ChinaProject(CXZZ11-0299)supported by the Postgraduate Innovative Program of Jiangsu Province,China
文摘The basic signal model of deformation monitoring with GPS was introduced and the main problems of GPS deformation monitoring in mining area were discussed. For the problem of noise signal extraction in GPS deformation monitoring, the Kalman-EMD method was proposed to obtain the effective deformation signal. The reliability and effectiveness of the methodology were tested and verified by analog signal. The results of experiment in Mongolia show that the accuracy of the proposed GPS deformation monitoring model is equivalent to that of level method.
基金Project(cstc2015jcyj BX0115)supported by the Chongqing Research Program of Basic Research and Frontier Technology,China
文摘The effects of the deformation temperature and the strain rate on the hot deformation behavior of pure copper were investigated based on compression tests. The expressions of strain hardening rate, dynamic recrystallization critical stress, saturated stress, dynamic recovery volume fraction and dynamic recrystallization volume fraction were determined. According to the processing map, the instability regions occur in regions of 400?450 °C, 0.001?0.05 s?1 and 450?750 °C, 0.05?1 s?1. The deformation mechanism in the stability region is dynamic recrystallization. The flow stress was predicted. The results also show that the true stress–true strain curves predicted by the extracted model are in good agreement with the experimental results.
基金Project (20110023110014) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010QD01) supported by Fundamental Research Funds for the Central Universities,China
文摘Differential interferometric synthetic aperture radar (DInSAR) technology is a new method to monitor the dynamic surface subsidence. It can monitor the large scope of dynamic deformation process of surface subsidence basin and better reflect the surface subsidence form in different stages. But under the influence of factors such as noise and other factors, the tilt and horizontal deformation curves regularity calculated by DInSAR data are poorer and the actual deviation is larger. The tilt and horizontal deformations are the important indices for the safety of surface objects protection. Numerical simulation method was used to study the dynamic deformation of LW32 of West Cliff colliery in Australia based on the DInSAR monitoring data. The result indicates that the subsidence curves of two methods fit well and the correlation coefficient is more than 95%. The other deformations calculated by numerical simulation results are close to the theory form. Therefore, considering the influence, the surface and its subsidiary structures and buildings due to mining, the numerical simulation method based on the DInSAR data can reveal the distribution rules of the surface dynamic deformation values and supply the shortcomings of DInSAR technology. The research shows that the method has good applicability and can provide reference for similar situation.
基金Projects(51231002,51271054,51571058,50671023)supported by the National Natural Science Foundation of China
文摘To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.