期刊文献+
共找到774篇文章
< 1 2 39 >
每页显示 20 50 100
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:3
1
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope RAINFALL Reservoir water level fluctuation deformation characteristics slope failure mechanism
下载PDF
Stability analysis of intermittently jointed rock slopes based on the stepped failure mode
2
作者 LI Dejian FU Junwen +4 位作者 LI Hekai CHENG Xiao ZHAO Lianheng ZHANG Yingbin PENG Xinyan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1019-1035,共17页
In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermitt... In practical engineering,due to the noncontinuity characteristics of joints in rock slopes,in addition to plane failure,stepped sliding failure may occur for intermittently jointed rock slopes.Especially for intermittently bedding jointed rock slopes,the correlation and difference in strength parameters between joints and rock bridges,along with the various failure modes and intermittency of rock bridges,contribute to the complexity of stepped failure modes and the unpredictability of failure regions.Based on the upper-bound limit analysis method and multi-sliders step-path failure mode,considering the shear and tensile failure of rock bridges and the weakened relationship between the strength parameters of rock bridges and jointed surfaces,by introducing the modified M-C failure criterion and the formula for calculating the energy consumption of tensile failure of rock bridges,two failure mechanisms are constructed to obtain the safety factor(F_(s))of intermittently jointed rock slopes.The sequential quadratic programming method is used to obtain the optimal upper-bound solution for F_(s).The influence of multiple key parameters(slope height H,horizontal distance L,Slope angleβ,shear strength parameters of the rock bridgeφr and cr,Dimensionless parameter u,weakening coefficients of the internal friction angle and cohesion between the rock bridges and joint surfaces Kφand Kc)on the stability analysis of intermittently jointed rock slopes under the shear failure mode of rock bridges as well as under the tensile failure mode is also explored.The reliability of the failure mechanisms is verified by comparative analysis with theoretical results,numerical results,and landslide cases,and the variation rules of F_(s)with each key parameter are obtained.The results show that F_(s) varies linearly withφr and cr of the rock bridge and with K_(φ)and K_(c),whereas F_(s)changes nonlinearly with H and L.In particular,with the increase in Kφand Kc,Fs increases by approximately 52.78%and 171.02%on average,respectively.For rock bridge tensile failure,F_(s) shows a nonlinearly positive correlation withφr,cr,Kφand Kc.In particular,with the increase in Kφand Kc,Fs increases by approximately 13%and 61.69%on average,respectively.Fs decreases rapidly with increasing slope gradientβand decreasing dimensionless parameterμ.When Kφand Kc are both less than 1.0,the stepped sliding surface occurs more easily than the plane failure surface,especially in the case of tensile failure of the rock bridge.In addition,rock slopes with higher strength parameters,taller heights,and greater weakening coefficients are prone to rock bridge tension failure with lower Fs,and more attention should be given to the occurrence of such accidents in actual engineering. 展开更多
关键词 Jointed rock slopes Stepped sliding failure Weakening characteristics Modified M‒C failure criterion
下载PDF
Deformation and failure characteristics and fracture evolution of cryptocrystalline basalt 被引量:4
3
作者 Zhenjiang Liu Chuanqing Zhang +3 位作者 Chunsheng Zhang Yang Gao Hui Zhou Zhaorong Chang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期990-1003,共14页
Cryptocrystalline basalt is one of the two major types of rocks exposed in the super large-scale underground powerhouse in Baihetan hydropower station in China.The rock of this type shows various sitespecific mechanic... Cryptocrystalline basalt is one of the two major types of rocks exposed in the super large-scale underground powerhouse in Baihetan hydropower station in China.The rock of this type shows various sitespecific mechanical responses(e.g.fragmentation,fracturing,and relaxation)during excavation.Using conventional triaxial testing facility MTS 815.03,we obtained the stressestrain curves,macroscopic failure characteristics,and strength characteristics of cryptocrystalline basalt.On this basis,evolution of crack initiation and propagation was explored using the finite-discrete element method(FDEM)to understand the failure mechanism of cryptocrystalline basalt.The test results showed that:(1)under different confining stresses,almost all the pre-peak stressestrain curves of cryptocrystalline basalt were linear and the post-peak stresses decreased rapidly;(2)the cryptocrystalline basalt showed a failure mode in a form of fragmentation under low and medium confining stresses while fragmentation-shear coupling failure dominated at high confining stresses;and(3)the initial strength ratio(sci/sf,where sci and sf are the crack initiation strength and peak strength,respectively)ranged from 0.45 to 0.55 and the damage strength ratio(scd/sf,where scd is the crack damage strength)exceeded 0.9.The stressestrain curve characteristics and failure modes of cryptocrystalline basalt could be reflected numerically.For this,FDEM simulation was employed to reveal the characteristics of cryptocrystalline basalt,including high scd/sf values and rapid failure after scd,with respect to the microscopic characteristics of mineral structures.The results showed that the fragmentation characteristics of cryptocrystalline basalt were closely related to the development of tensile cracks in rock samples prior to failure.Moreover,the decrease in degree of fragmentation with increasing confining stress was also correlated with the dominant effect of confining stress on the tensile cracks. 展开更多
关键词 Baihetan HYDROPOWER STATION CRYPTOCRYSTALLINE BASALT deformation and failure characteristics Characteristic strengths CRACK propagation evolution
下载PDF
Large deformation and failure mechanism analyses of Tangba high slope with a high-intensity and complex excavation process 被引量:2
4
作者 HOU Qi-dong WU Gao-jian +2 位作者 LI Hai-bo FAN Gang ZHOU Jia-wen 《Journal of Mountain Science》 SCIE CSCD 2019年第2期453-469,共17页
The Tangba high slope is mainly composed of coarse soils and supplies core wall materials for the construction of the Changheba dam. Since the filling intensity of the Changheba dam is high, the Tangba high slope suff... The Tangba high slope is mainly composed of coarse soils and supplies core wall materials for the construction of the Changheba dam. Since the filling intensity of the Changheba dam is high, the Tangba high slope suffers from a high-intensity excavation process, and reinforcement measures are usually not implemented immediately. Moreover, the distribution of useful materials is uneven and insufficient, and the mixing of different soil materials is necessary; thus, multiple simultaneous excavations and secondary excavation are inevitable. In the construction period from 2012 to 2016, large deformations occurred in this area, and one of the largest monitored horizontal deformations whose direction points to the opposite side of the valley even reached more than 8000 mm. According to field investigation, site monitoring and theoretical analysis, the large deformation in the Tangba high slope can be divided into two phases. In the first phase, the excavation construction breaks the original stress equilibrium state; in the second phase, the precipitation infiltration accelerates the deformation. Thus, the excavation construction and precipitation infiltration are the two major factors promoting the deformation, and the high-intensity and complex excavation process is the fundamental cause. Notably, rate of slope deformation significantly accelerated in rainy seasons due to precipitation infiltration; the rate also accelerated in early 2016 due to the high-intensity, complex excavation process. Comprehensively considering the above factors, timely and effective reinforcement measures are essential. 展开更多
关键词 Coarse soil slope LARGE deformation High-intensity and COMPLEX EXCAVATION failure mechanism Reinforcement measures
下载PDF
Experimental study on seismic response and progressive failure characteristics of bedding rock slopes 被引量:4
5
作者 Mingdong Zang Guoxiang Yang +3 位作者 Jinyu Dong Shengwen Qi Jianxian He Ning Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1394-1405,共12页
Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s... Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides. 展开更多
关键词 Bedding rock slope Large-scale shaking table test Seismic response Progressive failure characteristics
下载PDF
Deformation Mechanism and Stability of a Rocky Slope 被引量:4
6
作者 黄润秋 肖华波 +1 位作者 巨能攀 赵建军 《Journal of China University of Geosciences》 SCIE CAS CSCD 2007年第1期77-84,共8页
A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appear... A high slope is located on the side of the spillway at a hydropower station in Southwest China, which has some weak inter-layers inclining outwards. Parts of the slope show heavy weathering and unloading. There appeared deformation and tensile crack either on the surface or on the afteredge of the slope during excavation, and under a platform (elev. 488 m), two levels of slopes collapsed on the downriver side. Based on the investigation in situ and the analysis of the geological structure, the conceptual model of deformation and failure mechanism was erected for this slope. Furthermore, the deformation characteristics were studied with FLAC^3D numerical simulation. Comprehensive analysis shows that the whole deformation of the slope is unloading rebound in certain depth scope and the whole body does not slide along any weak interlayer. In addition, two parts with prominent local deformation in the shallow layer of the slope show the models of "creep sfiding-tensile cracking" and "slidlng-tensile cracking", respectively. Based on the above analysis, the corresponding project of support and reinforcement is proposed to make the slope more stable. 展开更多
关键词 high rock slope deformation and failure mechanism STABILITY SUPPORT
下载PDF
Mechanism of toppling and deformation in hard rock slope: a case of bank slope of Hydropower Station, Qinghai Province, China 被引量:2
7
作者 CAI Jun-chao JU Neng-pan +4 位作者 HUANG Run-qiu ZHENG Da ZHAO Wei-hua LI Long-qi HUANG Jian 《Journal of Mountain Science》 SCIE CSCD 2019年第4期924-934,共11页
Recently, various toppling slopes have emerged with the development of hydropower projects in the western mountainous regions of China. The slope on the right bank of the Laxiwa Hydropower Station, located on the main... Recently, various toppling slopes have emerged with the development of hydropower projects in the western mountainous regions of China. The slope on the right bank of the Laxiwa Hydropower Station, located on the mainstream of the Yellow River in the Qinghai Province of Northwest China, is a typical hard rock slope. Further, its deformation characteristics are different from those of common natural hard rock toppling. Because this slope is located close to the dam of the hydropower station, its deformation mechanism has a practical significance. Based on detailed geological engineering surveys, four stages of deformation have been identified using discrete element numerical software and geological engineering analysis methods, including toppling creep, initial toppling deformation, intensified toppling deformation, and current slope formation. The spatial and time-related deformation of this site also exhibited four stages, including initial toppling, toppling development, intensification of toppling, and disintegration and collapse. Subsequently, the mechanism of toppling and deformation of the bank slope were studied. The results of this study exhibit important reference value for developing the prevention–control design of toppling and for ensuring operational safety in the hydropower reservoir area. 展开更多
关键词 LAXIWA HYDROPOWER Station Hard rock slope Toppling deformation MECHANISM Discrete element method slope failure
下载PDF
Dissociation of gas hydrates by hydrocarbon migration and accumulation-derived slope failures:An example from the South China Sea 被引量:2
8
作者 Zhi-Feng Wan Wei Zhang +7 位作者 Chong Ma Jin-Qiang Liang Ang Li Da-Jiang Meng Wei Huang Cheng-Zhi Yang Jin-Feng Zhang Yue-Feng Sun 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期295-310,共16页
The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu... The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu gas hydrate field(site SH5)offer a valuable opportunity to study the relations between submarine slope failure and hydrocarbon accumulation and flow that is associated with a~2 kmdiameter gas chimney developed beneath site SH5 where none gas hydrates had been recovered by drilling and sampling despite the presence of distinct bottom simulating reflectors(BSRs)and favorable gas hydrate indication.The mechanism of submarine slope failure resulted from buoyancy extrusion and seepage-derived deformation which were caused by overpressure from a~1100 m-high gas column in a gas chimney was studied via numerical simulation.The~9.55 MPa overpressure caused by hydrocarbons that migrated through the gas chimney and then accumulated beneath subsurface gas hydratebearing impermeable sediments.This may have resulted in a submarine slope failure,which disequilibrated the gas hydrate-bearing zone and completely decomposed the gas hydrate once precipitated at site SH5.Before the gas hydrate decomposition,the largely impermeable sediments overlying the gas chimney may have undergone a major upward deformation due to the buoyancy extrusion of the overpressure in the gas chimney,and slope failure was initiated from plastic strain of the sediments and reduced internal strength.Slope failure subsequently resulted in partial gas hydrate decomposition and sediment permeability increase.The pressurized gas in the gas chimney may have diffused into the overlying sediments controlled by seepage-derived deformation,causing an effective stress reduction at the base of the sediments and significant plastic deformation.This may have formed a new cycle of submarine slope failure and finally the total gas hydrate dissociation.The modeling results of buoyancy extrusion and seepage-derived deformation of the overpressure in the gas chimney would provide new understanding in the development of submarine slope failure and the link between slope failure and gas hydrate accumulation and dissociation. 展开更多
关键词 Natural gas hydrate Submarine slope failure Gas chimney Buoyancy extrusion Seepage-derived deformation Shenhu area Northern South China Sea
下载PDF
Investigation on the Deformation and Failure Patterns of Loess Cut Slope Based on the Unsaturated Triaxial Test in Yan'an,China
9
作者 Lina Ma Shengwen Qi +2 位作者 Songfeng Guo Qiangbing Huang Xiaokun Hou 《Journal of Earth Science》 SCIE CAS CSCD 2024年第1期235-247,共13页
The large-scale implementation of the Gully Stabilization and Land Reclamation(GSLR)project induces various failures of loess slopes due to excavation in Yan'an,China.However,the deformation and failure behavior o... The large-scale implementation of the Gully Stabilization and Land Reclamation(GSLR)project induces various failures of loess slopes due to excavation in Yan'an,China.However,the deformation and failure behavior of these excavated loess slopes have not been fully understood.In this study,field investigation was undertaken for analyzing the distributions and failure features of excavation-induced loess slope failures.It is found that plastic failure mainly occurs in Q_(3) loess layers and brittle failure in Q_(2).To understand the underlying failure mechanism,a series of triaxial shear tests were conducted on intact Q_(3) and Q_(2) loess samples that with different water contents,namely natural water content(natural),dry side of the natural value(drying 5%),and wet side(wetting 5%).The characteristics of stress-strain curves and failure modes of the samples were analyzed.Results show that the stress-strain curves of Q_(2) samples are dominated by strain-softening characteristics,while Q_(3) samples mainly exhibit strain-harden features except in the drying state.Correspondingly,shear failures of Q_(3) specimens are mainly caused by shear crack planes(single,X or V-shaped).For Q_(2) loess,the dominance of tensile cracks is observed on the surface of damaged specimens.These disclose the different failure modes of excavated slopes located in different strata,that is,the arc sliding failure of Q_(3) loess slopes and the stepped tensile failure of Q_(2) loess slopes,and are helpful in the design and management of the ongoing GSLR projects in the Loess Plateau. 展开更多
关键词 loess slope slope stability failure patterns deformation
原文传递
Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact
10
作者 Nikhil Khaire Gaurav Tiwari +1 位作者 Vivek Patel M.A.Iqbal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期56-73,共18页
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu... In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions. 展开更多
关键词 Honeycomb sandwich structure offset impact Energy dissipation characteristic deformation and failure mode Geometry effect
下载PDF
Numerical analysis of slope collapse using SPH and the SIMSAND critical state model 被引量:1
11
作者 Zhao Lu Zhuang Jin Panagiotis Kotronis 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期169-179,共11页
Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently develo... Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently developed SIMSAND critical state sand model combined with the smoothed particle hydrodynamics(SPH)method is adopted in this work to study slope failure under large deformations.To illustrate the efficiency and accuracy of the SIMSAND-SPH approach,a series of slope collapse studies using the discrete element method(DEM)considering various particle shapes(i.e.spherical,tetrahedral and elongated)is adopted as benchmarks.The parameters of the SIMSAND model are calibrated using DEM triaxial tests.In comparison to the DEM simulations,the runout distance and final slope height are well characterized with the SIMSAND-SPH approach with less computational cost.All comparisons show that the SIMSAND-SPH approach is highly efficient and accurate,which can be an alternative numerical tool to simulate real scale granular flow. 展开更多
关键词 Granular material Smoothed particle hydrodynamics(SPH) Large deformations LandSLIDE Critical state slope failure Sand
下载PDF
Stability of High Slope Interbedded Strata with Low Dip Angle Constituted by Soft and Hard Rock Mass
12
作者 邓荣贵 周德培 张倬元 《Journal of Southwest Jiaotong University(English Edition)》 2002年第1期74-84,共11页
Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft whil... Slopes consisting of interbedded strata of soft and hard rock mass, such as purplish red mudstone and grey brown arkosic sandstone of Jurassic age, are very common in Sichuan basin of China. The mudstone is soft while the sandstone is hard and contains many opening or closing joints with a high dip angle. Some are nearly parallel and the others are nearly decussated with the trend of the slopes. Many natural slopes are in deformation or sliding because of those reasons. The stability of cutting slopes and supporting method to be taken for their stability in civil engineering are important. In this paper, the stability and deformation of the slopes are studied. The methods of analysis and support design principle are analyzed also. Finally, the method put forward is applied to study Fengdian high cutting slope in Sichuan section of the express way from Chengdu to Shanghai. The results indicate that the method is effective. 展开更多
关键词 rock mass mechanics deformation and failure of high slope interbedded strata with low dip angle expressway slope
下载PDF
断层斜交岩质高边坡开挖变形特征及其治理效果评价--以陕南地区某岩质高边坡为例 被引量:1
13
作者 石玉玲 侯明杰 +2 位作者 李怀鑫 晏长根 文奎 《地球科学与环境学报》 CAS 北大核心 2024年第3期400-413,共14页
为厘清断层斜交岩质高边坡开挖变形特性以及边坡治理后的时变特性,以陕南地区某断层斜交岩质高边坡为例,综合采用现场调查、数值模拟以及多点位移监测等方法分析断层斜交岩质高边坡破坏机制,归纳了断层斜交岩质高边坡的主要致灾因子,分... 为厘清断层斜交岩质高边坡开挖变形特性以及边坡治理后的时变特性,以陕南地区某断层斜交岩质高边坡为例,综合采用现场调查、数值模拟以及多点位移监测等方法分析断层斜交岩质高边坡破坏机制,归纳了断层斜交岩质高边坡的主要致灾因子,分析了边坡开挖过程中的变形特性,并探讨了边坡治理的时效性。结果表明:研究区域地形陡峭,受断层和坡脚开挖影响呈现出典型临空地形地貌,且受地质构造影响,出露岩体破碎程度较高,节理裂隙发育;基于数值仿真论证了断层斜交岩质高边坡采用“上部锚索锁固+中部坡体刷方+下部锚索和抗滑桩加固”方案治理的可行性,现场调查和监测数据结果表明边坡治理效果明显;断层处流土溶蚀效应明显,强降雨诱发岩质高边坡后缘断层附近平台发生塌陷,在断层和坡脚部位增设排水措施后坡体病害得到有效缓解,整体变形速率得到有效控制。研究成果对断层斜交岩质高边坡的治理及破坏机制分析具有参考意义。 展开更多
关键词 断层 岩质高边坡 边坡防治 破坏机制 数值仿真 变形特性 治理评价 陕西
下载PDF
“双曲线”型煤样承载力学特性试验研究
14
作者 尹大伟 苑啸天 +4 位作者 韩磊 范建国 江宁 汪锋 屈晓 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第8期50-62,共13页
煤炭地下气化结束后,两气化炉间形成类“双曲线”形煤柱,支撑覆岩,保障气化区域安全稳定。为研究类“双曲线”形煤柱承载力学特性,基于声发射监测系统和XTDIC三维全场应变测量系统,开展了不同侧向拱高(h=0,3,7,10,13,17 mm)的6组“双曲... 煤炭地下气化结束后,两气化炉间形成类“双曲线”形煤柱,支撑覆岩,保障气化区域安全稳定。为研究类“双曲线”形煤柱承载力学特性,基于声发射监测系统和XTDIC三维全场应变测量系统,开展了不同侧向拱高(h=0,3,7,10,13,17 mm)的6组“双曲线”形煤样单轴压缩试验,分析了h对煤样峰值载荷、变形破坏及声发射特征的影响,揭示了其承载破坏机制。结果表明:①“双曲线”形煤样可分为矩形结构(主要承载体)和侧向拱结构,其承载破坏机制与其受力形式、侧向拱结构有关;随着h增大,煤样承载能力降低,与h=0煤样相比,峰值载荷分别降低了7.66%,13.56%,26.83%,35.28%,62.75%。②随着h增大,煤样整体受力形式由以受压为主向受压–受弯曲转变,中部区域产生应力集中而形成薄弱区,对应的水平位移场向中部迁移,最终汇集于中部边缘处;而垂直位移场由水平条带状向倾斜条带状转变,最终集中于煤样侧向拱结构上端。③在轴向载荷作用下,煤样侧向拱结构对其矩形结构中部区域产生等效作用力,加之煤样非均质性影响,加剧了薄弱区损伤程度,该作用随着h增大而增强,煤样承受载荷未超过其抗拉强度即产生剪切破坏,其破坏模式由拉–剪混合破坏向剪切破坏转变,均伴随着不同程度的剥落和局部弹射破坏。④煤样声发射累计计数–时间曲线演化可分为3种类型,当h为0和3 mm时,分为“上凸”式增长、相对快速增长、快速增长、“突变”式增长4个阶段,其演化特征与常规煤岩试样一致;当h为7 mm和10 mm时,分为相对快速增长、快速增长、“突变”式增长3个阶段;当h为13 mm和17 mm时,分为快速增长和“突变”式增长2个阶段;峰后阶段均呈“突变”式增长,而峰前阶段增长形式不一致是由煤样裂纹稳定扩展和中部区域持续损伤共同导致的。 展开更多
关键词 “双曲线”形煤样 承载力学特性 等效作用力 变形破坏
下载PDF
多源煤基固废胶结充填体力学及变形破坏特征试验研究
15
作者 杨科 张继强 +2 位作者 何祥 魏祯 赵新元 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第6期102-114,共13页
【目的】为研究多源煤基固废胶结充填体的力学特性及变形破坏规律,选择5种典型煤基固废,开展了煤基固废胶结充填体(Coal-Based Solid Waste Cemented Backfill,CBSWCB)的单轴压缩、声发射响应及微观结构测试试验。【方法】分析了CBSWCB... 【目的】为研究多源煤基固废胶结充填体的力学特性及变形破坏规律,选择5种典型煤基固废,开展了煤基固废胶结充填体(Coal-Based Solid Waste Cemented Backfill,CBSWCB)的单轴压缩、声发射响应及微观结构测试试验。【方法】分析了CBSWCB单轴抗压强度的影响因素和交互作用,建立了基于交互作用的抗压强度影响因素四维空间可视化模型,结合CBSWCB的声发射及微观结构特征,阐明了单轴压缩条件下的力学演化特征及宏观变形破坏规律,从微观角度进一步论证了CBSWCB承载过程中水化反应机理及宏细观联系。【结果和结论】试验结果表明:(1)单轴抗压强度的主要影响因素是质量分数,而炉底渣掺量的影响程度最小。(2)单轴压缩下CBSWCB的宏观变形破坏由塑性、弱劈裂破坏逐渐向脆性、剪切破坏转化。(3) CBSWCB试件声发射参数演化可以分为上升期、平静期、活跃期、稳定期,声发射累计振铃计数曲线呈现明显的“阶梯状”增长,累计振铃计数在上升期和平稳期内缓慢增加,在活跃期急剧增加,在稳定期逐渐趋于平缓。(4)水泥掺量偏低以及多源煤基固废充填材料属性差异导致水化反应程度有限,水化产物数量较少是CBSWCB单轴抗压强度普遍偏低的主要原因。研究结果可为多源煤基固废用于充填开采提供一定参考依据。 展开更多
关键词 煤基固废 胶结充填体 变形破坏 声发射特征 空间可视化 水化反应
下载PDF
供水工程新近系红层区斜坡深层变形破坏模式分析
16
作者 袁宝远 吴浩文 《黑龙江科技大学学报》 CAS 2024年第2期270-276,共7页
针对新近系红层区斜坡变形破坏模式认识不足的问题,通过对以往工程区斜坡破坏现象的调查分析,寻找已有深层破坏形成的滑坡体,反分析滑坡体破坏前原始斜坡地质结构模型,并建立典型斜坡深层破坏模式,根据变形体主要工程地质条件,建立红层... 针对新近系红层区斜坡变形破坏模式认识不足的问题,通过对以往工程区斜坡破坏现象的调查分析,寻找已有深层破坏形成的滑坡体,反分析滑坡体破坏前原始斜坡地质结构模型,并建立典型斜坡深层破坏模式,根据变形体主要工程地质条件,建立红层斜坡变形体的三维数值模型,分析其在天然、地震及降雨等条件下的稳定性。结果表明,通过建立的新近系地层不同岩段区斜坡深层破坏模式,识别出新近系地层区供水工程20#支线沿线有一个大型深层破坏斜坡变形体。该斜坡变形体在降雨条件下的稳定性较差。 展开更多
关键词 供水工程 新近系红层 斜坡 深层变形破坏模式
下载PDF
供水工程民和组地层区斜坡深层变形破坏模式分析
17
作者 袁宝远 赵源峰 《安徽理工大学学报(自然科学版)》 CAS 2024年第2期59-66,共8页
目的红层软岩斜坡深层变形破坏具有一定隐蔽性,为解决寻找和识别具有一定隐蔽性的民和组地层区斜坡深层变形破坏变形体的问题。方法结合引黄济宁供水工程,依据民和组地层区斜坡变形破坏现象的调查分析,寻找已有深层破坏形成的滑坡体,反... 目的红层软岩斜坡深层变形破坏具有一定隐蔽性,为解决寻找和识别具有一定隐蔽性的民和组地层区斜坡深层变形破坏变形体的问题。方法结合引黄济宁供水工程,依据民和组地层区斜坡变形破坏现象的调查分析,寻找已有深层破坏形成的滑坡体,反分析滑坡体破坏前原始斜坡模型,模拟分析原始斜坡滑动破坏触发因素,建立民和组地层区典型斜坡深层变形破坏模式;然后根据建立的斜坡深层变形破坏模式,寻找识别民和组地层区深层变形破坏斜坡变形体,对典型斜坡变形体构建三维数值模拟模型,分析天然、地震及降雨等条件下的斜坡变形体的稳定性。结果通过研究,建立了民和组地层区不同岩段典型斜坡深层变形破坏模式,识别出民和组地层区供水工程22#支线沿线有一个大型深层变形破坏斜坡变形体,在暴雨条件下会沿砾岩层与泥岩夹层交接面发生深层滑动破坏。结论通过建立典型斜坡深层变形破坏模式识别深层变形破坏斜坡变形体并分析其工程稳定性,可以减少意外发生斜坡深层变形破坏现象,研究成果可为工程施工图设计提供依据,也为民和组地层区地质灾害分析提供参考。 展开更多
关键词 供水工程 民和组地层 斜坡 深层变形破坏模式 稳定性
下载PDF
Large-Scale Test Model of the Progressive Deformation and Failure of Cracked Soil Slopes 被引量:4
18
作者 Zhi Zhou Jiaming Zhang +3 位作者 Fulong Ning Yi Luo Lily Chong Kuangbiao Sun 《Journal of Earth Science》 SCIE CAS CSCD 2020年第6期1097-1108,共12页
A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking... A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking the Anhui area along the Yangtze River as a field example.The results indicate that(1)during rainfall,the soil around the shallow shrinkage fissures attains transient saturation,and the attendant decrease of matric suction is the primary cause of the shallow slope failure;(2)slope deformation continues during post-rainfall evaporation;(3)if a period of evaporation is followed by heavy rainfall,soil creep is concentrated near the deepest cracks,and two zones of steep gradients in pore pressure form at the crest and toe of the slope.Finally,a saturated zone forms near each crack base and gradually enlarges,eventually forming a continuous saturated layer that induces the slope instability or failure. 展开更多
关键词 slope failure geological engineering cracked soil slope large-scale test progressive deformation
原文传递
富水软弱围岩劈裂型注浆加固体力学性能与破坏模式
19
作者 杨磊 张耀磊 +3 位作者 唐明秀 李让杰 徐真浩 尹贺 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期649-664,共16页
富水软弱围岩劈裂型注浆加固体的力学性能与破坏模式对注浆整体效果具有显著影响。基于室内注浆模拟试验、劈裂型注浆加固体三轴压缩试验和相应的离散元数值模拟,研究劈裂浆脉形态与空间分布特征及注浆加固规律,分析浆脉粗糙度、厚度、... 富水软弱围岩劈裂型注浆加固体的力学性能与破坏模式对注浆整体效果具有显著影响。基于室内注浆模拟试验、劈裂型注浆加固体三轴压缩试验和相应的离散元数值模拟,研究劈裂浆脉形态与空间分布特征及注浆加固规律,分析浆脉粗糙度、厚度、数量和倾角对注浆加固体力学性能与破坏模式的影响,阐明三轴加载条件下加固体内部孔隙率和微裂纹演化规律。研究结果表明:劈裂浆脉空间分布模式主要包括半贯通型、交叉型和贯通型,注浆影响区域可分为加固区、过渡区和未扰动区;浆脉存在有效提升了加固体的整体刚度和承载力,加固体峰值偏应力与浆脉粗糙度、厚度、数量呈正相关关系,而浆脉倾角增大会导致整体强度降低;加固体破坏模式主要有局部膨胀型和剪切滑移型,受浆脉形态特征影响,二者对整体变形破坏的贡献程度不同;在加载过程中,浆-土界面处首先萌生微裂纹,进而浆脉两侧软弱介质被压缩挤密后出现大量微裂纹,裂纹数量持续增多直至试样破坏;加固体孔隙率与微裂纹萌生数量变化规律均呈现明显的阶段性特征,且受浆脉形态特征影响显著。 展开更多
关键词 劈裂注浆 加固体 浆脉形态特征 变形破坏模式 峰值偏应力 微裂纹萌生
下载PDF
循环梯度加载下煤岩损伤破坏特性及能量演化规律研究
20
作者 张民波 李春欣 +4 位作者 张世龙 黄强勇 牛艺骁 贾雨豪 刘任涛 《煤矿安全》 CAS 北大核心 2024年第2期133-140,共8页
煤矿开采中岩体受开挖卸荷因素的影响常处于反复的循环加载过程,为研究循环梯度加载作用下煤岩的损伤破坏特性和能量演化规律,对煤样进行单轴循环梯度加载实验,对比分析煤岩在不同循环梯度加载下的变形破坏特性、输入能量密度、耗散能... 煤矿开采中岩体受开挖卸荷因素的影响常处于反复的循环加载过程,为研究循环梯度加载作用下煤岩的损伤破坏特性和能量演化规律,对煤样进行单轴循环梯度加载实验,对比分析煤岩在不同循环梯度加载下的变形破坏特性、输入能量密度、耗散能密度和损伤变量的规律。结果表明:随着循环梯度应力的递增,煤岩试样所承受的循环次数递减、峰值强度降低,分别为17.97、14.86、11.23、10.53 MPa;在循环梯度加载中,输入能量密度绝大部分以弹性应变能的形式储存于岩样内部,耗散能在单次循环输入总能量的0.2%~40%之间递增。选用累积耗散作为煤岩损伤破坏全过程的量化指标,并通过Logistic方程对煤岩损伤进行了拟合,得到了煤岩损伤的演化模型。 展开更多
关键词 煤岩损伤 围岩控制 循环梯度加载 破坏变形 耗散能 能量演化 损伤特性
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部