When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the...When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
Based on the analysis and research into ground pressure behavior law and surrounding rock deformation of a large number of roadways affected by mining activity,this paper proposed a relation between the surrounding ro...Based on the analysis and research into ground pressure behavior law and surrounding rock deformation of a large number of roadways affected by mining activity,this paper proposed a relation between the surrounding rock deformation during mining ,the surrounding rock deformation rate during stable stage of mining and the chain pillar width. Moreover,it established the relation between the total amount of surrounding rock deformation during service period of roadway and the chain pillar width,which provides a principal basis for choosing the chain pillar width.展开更多
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a...In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.展开更多
A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformat...A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.展开更多
Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deform...Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deformation and damage of roadway surrounding rock and an analysis of its mechanism were carried out. The gray correlation theory was used in support scheme optimization design. First, causes and mechanism of deformation of the 1 000 m horizontal transport channel were analyzed through field investigation, laboratory test and data processing methods. We arguued that poor engineering geological conditions and deep pressure increases were the main factors, and the deformation mechanism was mainly the ground deformation pressure. Second, the gray correlation theory was used to construct supporting optimization decision method in the deep roadway. This method more comprehensively considers various factors, including construction, costs, and supporting material functions. The combined support with pre-stressed anchor cables, shotcrete layer, bolt and metal net was put forward according to the actual roadway engineering characteristics. Finally, 4 support schemes were put forward for new roadways. The gray relational theory was applied to optimizing the supporting method, undertaking technical and economic comparison to obtain the correlation degree, and accordingly the schemes were evaluated. It was concluded as follows: the best was the flexible retaining scheme using the steel strand anchor; the second best was the one using plate anchors on the top and rigid common screw steel bolt on the two sides; the ttiird was; the rigid common screw steel bolt in full section of roadway; and the worst is the planished steel rigid support. The optimized scheme was applied to the 1000 m level of new excavation roadway. The results show that the roadway surrounding rock can reach a stable state after 5 to 6 months monitoring, with a convergence rate less than 1 mm/d.展开更多
Aiming to get the strata behavior and stability rules of surrounding rock of the main return airway of Yushujing Coal Mine, convergence deformation of two sides and force of U-shaped steel yieldable support and bolt w...Aiming to get the strata behavior and stability rules of surrounding rock of the main return airway of Yushujing Coal Mine, convergence deformation of two sides and force of U-shaped steel yieldable support and bolt were monitored, and deformation of surrounding rock and mechanical characteristics of support structure were timely obtained to guide the informa- tion construction and optimize supporting parameters in water-rich soft rock roadway. The field monitoring results indicate the following. (1) Convergence displacement of rock surface increases with time continuity and shows surrounding rock's intense theological behavior. The original support scheme cannot control the large deformation and strongly theological behavior; (2) Without backfilling, the U-shaped steel support begins to bear load after erecting for 4-7 days and increases rapidly in the first 30 days. The U-shaped steel support at the right shoulder and top of roadway bears a larger force and the left side and shoulder bears a smaller force; (3) The stress of bolt increasing over time and at the right shoulder of roadway has larger growth and value. The mechanism of rock deformation and the failure and strata behavior in water-rich soft rock roadway are revealed based on the results of the measured relaxation zone of surrounding rock, measured stresses, and the rock mechanics tests.展开更多
It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analy...It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.展开更多
The first topic discussed in this paper is to evaluate the present supporting theories,among which the typical two are collapse arch and elasto-plastic theories. The former is rather limited in practical application,a...The first topic discussed in this paper is to evaluate the present supporting theories,among which the typical two are collapse arch and elasto-plastic theories. The former is rather limited in practical application,and the latter is built up on some assumptions which is inconsis-tent with the reality,for it is of no need to support a roadway of which the surrounding rock is in elasto-plastic state. The second topic is to prove the objective existence of the broken zone in surrounding rock(BZSR) by a series of laboratory experiments and field measurements. The paper indicates that the object to be supported mainly is the bulking or expanding force resulted from the development of BZSR. This is remarkably different from the existing points of view which have been generally recognized nowadays. So far ,this theory has been tested in supporting more than ten thousand meters roadways located in various strata and has proved itself to have a great technoeconomical benefit.展开更多
A comprehensive underground monitoring was conducted in a coal mine. The purpose of this research was to clarify the deformation and failure behavior of stratified weak roof strata of longwall roadway in adverse groun...A comprehensive underground monitoring was conducted in a coal mine. The purpose of this research was to clarify the deformation and failure behavior of stratified weak roof strata of longwall roadway in adverse ground conditions. The field investigation incorporating a range of geotechnical instrumentation was conducted over a period of time ever since the formation of opening the site was buried into the goaf of a retreating longwall panel. The roof layer deformation and failure characteristics associated with the three stages of heading development, after development and before extraction, as well as after longwall extraction were identified on the basis of field investigation and analytical study, the results clearly demonstrated that how the roof deformation and failure progress were strongly related to these three stages of the mining activities mentioned.展开更多
The horizontal distance X between roadway and the edge of its upper pillar is considered as an important parameter for layout of roadway in floor strata or in the adjacent coal seam. Based on the research achievements...The horizontal distance X between roadway and the edge of its upper pillar is considered as an important parameter for layout of roadway in floor strata or in the adjacent coal seam. Based on the research achievements of rockstrata pressure, this paper illustrates the quantitative relationship among the mining situation of upper searn, the rockstrata properties around roadway, the vertital distanee Z (between roadway and its upper pillar), and the horizontai distance X (between roadway and the edge of its upper pillar), and provides a main basiS for the selection of value X and the relative location between roadway and its upper seam.展开更多
基金supported by the Project of Science and Technology Research and Development Plan of China Railway (Grant No. P2018G045)the Open Fund of Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciencesthe Open Fund of Hunan International Scientific and Technological Innovation Cooperation Base of Advanced Construction and Maintenance Technology of Highway (Changsha University of Science & Technology) (Grant No. kfj190803)。
文摘When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
文摘Based on the analysis and research into ground pressure behavior law and surrounding rock deformation of a large number of roadways affected by mining activity,this paper proposed a relation between the surrounding rock deformation during mining ,the surrounding rock deformation rate during stable stage of mining and the chain pillar width. Moreover,it established the relation between the total amount of surrounding rock deformation during service period of roadway and the chain pillar width,which provides a principal basis for choosing the chain pillar width.
基金Projects(52074166,51774195,51704185)supported by the National Natural Science Foundation of ChinaProject(2019M652436)supported by the China Postdoctoral Science Foundation。
文摘In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.
基金Project 40773040 supported by the National Basic Research Program of China
文摘A similar material model and a numerical simulation were constructed and are described herein. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear theological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, theological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations.
基金Funded by Plan Projects of Hunan Provincial Science&Technology Department(2014FJ3046)Scientific Research Fund of Hunan Provincial Education Department(No.14A045)+1 种基金National Natural Science Foundation of China(Grant Nos.51434006,51374105 and 51374106)China Postdoctoral Science Foundation 2014M562135)
文摘Aiming at the large deformation and support problems of high-stress and broken-expansion surrounding rock, and taking 1 000 m level roadway of Mine II in Jinchuan as the research object, an investigation on the deformation and damage of roadway surrounding rock and an analysis of its mechanism were carried out. The gray correlation theory was used in support scheme optimization design. First, causes and mechanism of deformation of the 1 000 m horizontal transport channel were analyzed through field investigation, laboratory test and data processing methods. We arguued that poor engineering geological conditions and deep pressure increases were the main factors, and the deformation mechanism was mainly the ground deformation pressure. Second, the gray correlation theory was used to construct supporting optimization decision method in the deep roadway. This method more comprehensively considers various factors, including construction, costs, and supporting material functions. The combined support with pre-stressed anchor cables, shotcrete layer, bolt and metal net was put forward according to the actual roadway engineering characteristics. Finally, 4 support schemes were put forward for new roadways. The gray relational theory was applied to optimizing the supporting method, undertaking technical and economic comparison to obtain the correlation degree, and accordingly the schemes were evaluated. It was concluded as follows: the best was the flexible retaining scheme using the steel strand anchor; the second best was the one using plate anchors on the top and rigid common screw steel bolt on the two sides; the ttiird was; the rigid common screw steel bolt in full section of roadway; and the worst is the planished steel rigid support. The optimized scheme was applied to the 1000 m level of new excavation roadway. The results show that the roadway surrounding rock can reach a stable state after 5 to 6 months monitoring, with a convergence rate less than 1 mm/d.
基金Supported by the Projects of National Natural Science Foundation (51174196) the Program for New Century Excellent Talents in University (NCET-07-0519)
文摘Aiming to get the strata behavior and stability rules of surrounding rock of the main return airway of Yushujing Coal Mine, convergence deformation of two sides and force of U-shaped steel yieldable support and bolt were monitored, and deformation of surrounding rock and mechanical characteristics of support structure were timely obtained to guide the informa- tion construction and optimize supporting parameters in water-rich soft rock roadway. The field monitoring results indicate the following. (1) Convergence displacement of rock surface increases with time continuity and shows surrounding rock's intense theological behavior. The original support scheme cannot control the large deformation and strongly theological behavior; (2) Without backfilling, the U-shaped steel support begins to bear load after erecting for 4-7 days and increases rapidly in the first 30 days. The U-shaped steel support at the right shoulder and top of roadway bears a larger force and the left side and shoulder bears a smaller force; (3) The stress of bolt increasing over time and at the right shoulder of roadway has larger growth and value. The mechanism of rock deformation and the failure and strata behavior in water-rich soft rock roadway are revealed based on the results of the measured relaxation zone of surrounding rock, measured stresses, and the rock mechanics tests.
基金Project(2000G033) supported by the S & T, Ministry of Railroad , China
文摘It is very important to monitor surrounding rock deformation in tunnel construction. The principle, function, development and application of the system composed of a total station and computer for monitoring and analyzing surrounding rock deformation were discussed. The new methods of two free station of 3D measurement and its mathematic adjustment mode were presented. The development of software for total station on-board and post for computer were also described. Without centering it and measuring its height, the total station controlled by the software on-board can fulfill the whole measurements to target points. Monitoring data can be processed by the post software and results of regression analysis, forecasting information of the tunnel surrounding rock deformation can be provided in time. The practical use shows that this system is practicable, highly accurate and efficient. It satisfies the needs of safety and information construction in tunnel construction of underground engineering.
文摘The first topic discussed in this paper is to evaluate the present supporting theories,among which the typical two are collapse arch and elasto-plastic theories. The former is rather limited in practical application,and the latter is built up on some assumptions which is inconsis-tent with the reality,for it is of no need to support a roadway of which the surrounding rock is in elasto-plastic state. The second topic is to prove the objective existence of the broken zone in surrounding rock(BZSR) by a series of laboratory experiments and field measurements. The paper indicates that the object to be supported mainly is the bulking or expanding force resulted from the development of BZSR. This is remarkably different from the existing points of view which have been generally recognized nowadays. So far ,this theory has been tested in supporting more than ten thousand meters roadways located in various strata and has proved itself to have a great technoeconomical benefit.
基金This work was financially supported by the Innovation Fund for Outstanding Scholar of Henan Province, China (No.0621000400).
文摘A comprehensive underground monitoring was conducted in a coal mine. The purpose of this research was to clarify the deformation and failure behavior of stratified weak roof strata of longwall roadway in adverse ground conditions. The field investigation incorporating a range of geotechnical instrumentation was conducted over a period of time ever since the formation of opening the site was buried into the goaf of a retreating longwall panel. The roof layer deformation and failure characteristics associated with the three stages of heading development, after development and before extraction, as well as after longwall extraction were identified on the basis of field investigation and analytical study, the results clearly demonstrated that how the roof deformation and failure progress were strongly related to these three stages of the mining activities mentioned.
文摘The horizontal distance X between roadway and the edge of its upper pillar is considered as an important parameter for layout of roadway in floor strata or in the adjacent coal seam. Based on the research achievements of rockstrata pressure, this paper illustrates the quantitative relationship among the mining situation of upper searn, the rockstrata properties around roadway, the vertital distanee Z (between roadway and its upper pillar), and the horizontai distance X (between roadway and the edge of its upper pillar), and provides a main basiS for the selection of value X and the relative location between roadway and its upper seam.