Wavelet theory is efficient as an adequate tool for analyzing single epoch GPS deformation signal. Wavelet analysis technique on gross error detection and recovery is advanced. Criteria of wavelet function choosing an...Wavelet theory is efficient as an adequate tool for analyzing single epoch GPS deformation signal. Wavelet analysis technique on gross error detection and recovery is advanced. Criteria of wavelet function choosing and Mallat decomposition levels decision are discussed. An effective deformation signal extracting method is proposed, that is wavelet noise reduction technique considering gross error recovery, which combines wavelet multi-resolution gross error detection results. Time position recognizing of gross errors and their repairing performance are realized. In the experiment, compactly supported orthogonal wavelet with short support block is more efficient than the longer one when discerning gross errors, which can obtain more finely analyses. And the shape of discerned gross error of short support wavelet is simpler than that of the longer one. Meanwhile, the time scale is easier to identify.展开更多
There are various influencing factors that affect the deformation observation, and deformation signals show differ- ent characteristics under different scales. Wavelet analysis possesses multi-scale property, and the ...There are various influencing factors that affect the deformation observation, and deformation signals show differ- ent characteristics under different scales. Wavelet analysis possesses multi-scale property, and the information entropy has great representational capability to the complexity of information. By hamming window to the wavelet coefficients and windowed wavelet energy obtained by multi-resolution analysis (MRA), it can be achieved to measure the wavelet time entropy (WTE) and wavelet energy entropy (WEE). The paper established deformation signals, selected the parameters, and compared the sin- gularity detection ability and anti-noise ability of two kinds of wavelet entropy and applied them to the singularity detection at the GPS continuously operating reference stations. It is shown that the WTE performs well in weak singularity information de- tection in finite frequency components signals and the WEE is more suitable for detecting the singularity in the signals with complex, strong background noise.展开更多
基金Supported by Specialized Research Fundfor the Doctoral Programof Higher Educationin China(No.20040290503) Science and Technology Fundationof CUMT(No.2005B020) .
文摘Wavelet theory is efficient as an adequate tool for analyzing single epoch GPS deformation signal. Wavelet analysis technique on gross error detection and recovery is advanced. Criteria of wavelet function choosing and Mallat decomposition levels decision are discussed. An effective deformation signal extracting method is proposed, that is wavelet noise reduction technique considering gross error recovery, which combines wavelet multi-resolution gross error detection results. Time position recognizing of gross errors and their repairing performance are realized. In the experiment, compactly supported orthogonal wavelet with short support block is more efficient than the longer one when discerning gross errors, which can obtain more finely analyses. And the shape of discerned gross error of short support wavelet is simpler than that of the longer one. Meanwhile, the time scale is easier to identify.
基金Supported by the Sub-topics of the National 863 Projects (2009AA 121402-5) the Sub-topics of the National 927 Projects (2009AA 121401) the Natural Science Foundation of Sbandong Province (ZR2010DL003)
文摘There are various influencing factors that affect the deformation observation, and deformation signals show differ- ent characteristics under different scales. Wavelet analysis possesses multi-scale property, and the information entropy has great representational capability to the complexity of information. By hamming window to the wavelet coefficients and windowed wavelet energy obtained by multi-resolution analysis (MRA), it can be achieved to measure the wavelet time entropy (WTE) and wavelet energy entropy (WEE). The paper established deformation signals, selected the parameters, and compared the sin- gularity detection ability and anti-noise ability of two kinds of wavelet entropy and applied them to the singularity detection at the GPS continuously operating reference stations. It is shown that the WTE performs well in weak singularity information de- tection in finite frequency components signals and the WEE is more suitable for detecting the singularity in the signals with complex, strong background noise.