The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it diffi...The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.展开更多
The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reductio...The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reduction method is proposed to capture the progressive failure of slope. This method can calculate the warning deformation of landslide in this study. Only strength parameters of the yielded zone of landslide will be reduced by using the method. Through continuous local reduction of the strength parameters of the yielded zone, the potential sliding surface developed gradually and evolved to breakthrough finally. The result shows that the proposed method can simulate the progressive failure of slope truly. The yielded zone and deformation of landslide obtained by the method are smaller than those of overall strength reduction method. The warning deformation of landslide can be obtained by using the local dynamic strength reduction method which is based on the softening characteristics of the sliding surface.展开更多
基金supported by the National Natural Science Foundation of China(Grants No.52079049,U2243223,51609074,51739003,and 51579086).
文摘The material mechanical parameters of the dam body and foundation will change when a dam is reinforced during the aging process.This causes significant changes in the structural state of the project and makes it difficult to ensure its structural safety.In this study,a new deformation warning index for reinforced concrete dams was developed according to the prototype monitoring data,statistical models,three-dimensional finite element model(FEM)numerical simulation,and the critical conditions of the dam structure.A statistical model was established to separate the water pressure component.Then,a three-dimensional FEM of the reinforced concrete dam was constructed to simulate the water pressure component.Furthermore,the deformation components that affected the mechanical parameters of the dam under the same amount of reservoir water level change were separated and quantified accurately.In addition,the method for inversion of comprehensive mechanical parameters after dam reinforcement was used.The influence mechanisms of the deformation behavior of concrete dams under the reservoir water level and temperature changes were investigated.A new deformation warning index was developed by combining the forward-simulated critical water pressure component and temperature component in the period of extreme temperature decrease with the aging component separated by the statistical model.The new deformation warning index considers the structural state of the dam before and after reinforcement and links the structural strength criterion and the deformation evolution mechanisms.It provides a theoretical foundation and decision support for long-term service and operation management of reinforced dams.
基金supported by the National Natural Science Foundation of China(Grant Nos.41002110,41272330and41130745)the research fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2012Z003)supported by the funding of Science and Technology Office of Sichuan Province(Grant No.2012JY0110)
文摘The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reduction method is proposed to capture the progressive failure of slope. This method can calculate the warning deformation of landslide in this study. Only strength parameters of the yielded zone of landslide will be reduced by using the method. Through continuous local reduction of the strength parameters of the yielded zone, the potential sliding surface developed gradually and evolved to breakthrough finally. The result shows that the proposed method can simulate the progressive failure of slope truly. The yielded zone and deformation of landslide obtained by the method are smaller than those of overall strength reduction method. The warning deformation of landslide can be obtained by using the local dynamic strength reduction method which is based on the softening characteristics of the sliding surface.