The 2-cocycles on the algebra of differential operators was studied in Fef. [1]. In this note the Lie algebras of derivations of the algebra and the Lie algebra of differential operators are determined. 1 The Lie Alge...The 2-cocycles on the algebra of differential operators was studied in Fef. [1]. In this note the Lie algebras of derivations of the algebra and the Lie algebra of differential operators are determined. 1 The Lie Algebra of Derivations of the Algebra of Differential Operators Let =C[t, t<sup>-1</sup>] be the Laurent polynomial algebra, d/dt be the differential展开更多
The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in ...The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.展开更多
The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of th...The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of the orthogonal Lie algebra o(n + 2, C). Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector a^→∈ C^n, we prove that the space forms an irreducible o(n + 2, C)-module for any c ∈ C if a^→ is not on a certain hypersurface. By partially swapping differential operators and multiplication operators, we obtain more general differential operator representations of o(n+2, C) on the polynomial algebra in n variables. Moreover, we prove that l forms an infinite-dimensional irreducible weight o(n +2, C)-module with finite-dimensional weight subspaces if c Z/2.展开更多
In our earlier paper,we generalize the one-parameter(c)family of inhomogeneous firstorder differential operator representations of the orthogonal Lie algebras arising from conformal transformations to those of orthosy...In our earlier paper,we generalize the one-parameter(c)family of inhomogeneous firstorder differential operator representations of the orthogonal Lie algebras arising from conformal transformations to those of orthosymplectic Lie super algebras,and determine the irreducible condition.This paper deals with the cases when the irreducible condition fails.We prove that if n-m-1>0 and c is an integer satisfying 1≤c≤n-m-1,the representation of osp(2n+2|2m)has a composition series of length 2,and when n-m-1≥0 and c∈-N,the representation of osp(2n+2|2m)has a composition series of length 3,where N is the set of nonnegative integers.Moreover,we show that if c∈(max{n-m,0}-1/2-N)∪(-N),the representation of osp(2n+3|2m)has a composition series of length 2.In particular,we obtain an explicit presentation of the irreducible module with highest weight lλ2-λ1,where l is any positive integer and it is not a generalized Verma module.展开更多
In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar...In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar to the ones they already used for studying the Schwarzschild geometry. Of course, such a differential sequence is well known for the Minkowski metric and successively contains the Killing (order 1), the Riemann (order 2) and the Bianchi (order 1 again) operators in the linearized framework, as a particular case of the Vessiot structure equations. In all these cases, they discovered that the compatibility conditions (CC) for the corresponding Killing operator were involving a mixture of both second order and third order CC and their idea has been to exhibit only a minimal number of generating ones. Unhappily, these physicists are neither familiar with the formal theory of systems of partial differential equations and differential modules, nor with the formal theory of Lie pseudogroups. Hence, even if they discovered a link between these differential sequences and the number of parameters of the Lie group preserving the background metric, they have been unable to provide an intrinsic explanation of this fact, being limited by the technical use of Weyl spinors, complex Teukolsky scalars or Killing-Yano tensors. The purpose of this difficult computational paper is to provide differential and homological methods in order to revisit and solve these questions, not only in the previous cases but also in the specific case of any Lie group or Lie pseudogroup of transformations. These new tools, which are now available as computer algebra packages, question the mathematical foundations of GR and the origin of gravitational waves.展开更多
The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or part...The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.展开更多
In this paper, we consider the graded path category associated to a quiver. We investigate all n-differentials on such a category, and also study the associated graded Lie algebra. Moreover, a necessary and sufficient...In this paper, we consider the graded path category associated to a quiver. We investigate all n-differentials on such a category, and also study the associated graded Lie algebra. Moreover, a necessary and sufficient condition is given for the graded path categorv to admit a DG category structure.展开更多
基金Project supported by the National Natural Science Foundation of China.
文摘The 2-cocycles on the algebra of differential operators was studied in Fef. [1]. In this note the Lie algebras of derivations of the algebra and the Lie algebra of differential operators are determined. 1 The Lie Algebra of Derivations of the Algebra of Differential Operators Let =C[t, t<sup>-1</sup>] be the Laurent polynomial algebra, d/dt be the differential
文摘The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable.
基金supported by National Natural Science Foundation of China(Grant Nos.11171324 and 11321101)
文摘The conformal transformations with respect to the metric defining the orthogonal Lie algebra o(n, C) give rise to a one-parameter (c) family of inhomogeneous first-order differential operator representations of the orthogonal Lie algebra o(n + 2, C). Letting these operators act on the space of exponential-polynomial functions that depend on a parametric vector a^→∈ C^n, we prove that the space forms an irreducible o(n + 2, C)-module for any c ∈ C if a^→ is not on a certain hypersurface. By partially swapping differential operators and multiplication operators, we obtain more general differential operator representations of o(n+2, C) on the polynomial algebra in n variables. Moreover, we prove that l forms an infinite-dimensional irreducible weight o(n +2, C)-module with finite-dimensional weight subspaces if c Z/2.
基金Supported by National Key R&D Program of China(Grant No.2020YFA0712600)。
文摘In our earlier paper,we generalize the one-parameter(c)family of inhomogeneous firstorder differential operator representations of the orthogonal Lie algebras arising from conformal transformations to those of orthosymplectic Lie super algebras,and determine the irreducible condition.This paper deals with the cases when the irreducible condition fails.We prove that if n-m-1>0 and c is an integer satisfying 1≤c≤n-m-1,the representation of osp(2n+2|2m)has a composition series of length 2,and when n-m-1≥0 and c∈-N,the representation of osp(2n+2|2m)has a composition series of length 3,where N is the set of nonnegative integers.Moreover,we show that if c∈(max{n-m,0}-1/2-N)∪(-N),the representation of osp(2n+3|2m)has a composition series of length 2.In particular,we obtain an explicit presentation of the irreducible module with highest weight lλ2-λ1,where l is any positive integer and it is not a generalized Verma module.
文摘In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar to the ones they already used for studying the Schwarzschild geometry. Of course, such a differential sequence is well known for the Minkowski metric and successively contains the Killing (order 1), the Riemann (order 2) and the Bianchi (order 1 again) operators in the linearized framework, as a particular case of the Vessiot structure equations. In all these cases, they discovered that the compatibility conditions (CC) for the corresponding Killing operator were involving a mixture of both second order and third order CC and their idea has been to exhibit only a minimal number of generating ones. Unhappily, these physicists are neither familiar with the formal theory of systems of partial differential equations and differential modules, nor with the formal theory of Lie pseudogroups. Hence, even if they discovered a link between these differential sequences and the number of parameters of the Lie group preserving the background metric, they have been unable to provide an intrinsic explanation of this fact, being limited by the technical use of Weyl spinors, complex Teukolsky scalars or Killing-Yano tensors. The purpose of this difficult computational paper is to provide differential and homological methods in order to revisit and solve these questions, not only in the previous cases but also in the specific case of any Lie group or Lie pseudogroup of transformations. These new tools, which are now available as computer algebra packages, question the mathematical foundations of GR and the origin of gravitational waves.
文摘The purpose of this short but difficult paper is to revisit the mathematical foundations of both General Relativity (GR) and Gauge Theory (GT) in the light of a modern approach to nonlinear systems of ordinary or partial differential equations, using new methods from Differential Geometry (D.C. Spencer, 1970), Differential Algebra (J.F. Ritt, 1950 and E. Kolchin, 1973) and Algebraic Analysis (M. Kashiwara, 1970). The main idea is to identify the differential indeterminates of Ritt and Kolchin with the jet coordinates of Spencer, in order to study Differential Duality by using only linear differential operators with coefficients in a differential field K. In particular, the linearized second order Einstein operator and the formal adjoint of the Ricci operator are both parametrizing the 4 first order Cauchy stress equations but cannot themselves be parametrized. In the framework of Homological Algebra, this result is not coherent with the vanishing of a certain second extension module and leads to question the proper origin and existence of gravitational waves. As a byproduct, we also prove that gravitation and electromagnetism only depend on the second order jets (called elations by E. Cartan in 1922) of the system of conformal Killing equations because any 1-form with value in the bundle of elations can be decomposed uniquely into the direct sum (R, F) where R is a section of the Ricci bundle of symmetric covariant 2-tensors and the EM field F is a section of the vector bundle of skew-symmetric 2-tensors. No one of these purely mathematical results could have been obtained by any classical approach. Up to the knowledge of the author, it is also the first time that differential algebra in a modern setting is applied to study the specific algebraic feature of most equations to be found in mathematical physics, particularly in GR.
基金Project supported by the NationM Natural Science Foundation of China (No. 11271318, No. 11171296, No. J1210038), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110101110010) and the Zhejiang Provincial Natural Science Foundation of China (No. LZ13A010001 and No. J20100343).Acknowledgements. The authors would like to thank the editor and referees for important suggestions and remarks. Also, the first author would like to thank Dr. Rongxiang Tian from Zhejiang University for her kind help in the process of this research.
文摘In this paper, we consider the graded path category associated to a quiver. We investigate all n-differentials on such a category, and also study the associated graded Lie algebra. Moreover, a necessary and sufficient condition is given for the graded path categorv to admit a DG category structure.