The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a...Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.展开更多
In this paper we suggest and prove that Newton's method may calculate the asymptotic analytic periodic solution of strong and weak nonlinear nonautonomous systems, so that a new analytic method is offered for stud...In this paper we suggest and prove that Newton's method may calculate the asymptotic analytic periodic solution of strong and weak nonlinear nonautonomous systems, so that a new analytic method is offered for studying strong and weak nonlinear oscillation systems. On the strength of the need of our method, we discuss the existence and calculation of the periodic solution of the second order nonhomogeneous linear periodic system. Besides, we investigate the application of Newton's method to quasi-linear systems. The periodic solution of Duffing equation is calculated by means of our method.展开更多
To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pip...To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.展开更多
Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the d...Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the deformation properties of complex fractured rock mass.It comprehends both the advantages of the discrete fracture network model and the equivalent continuum model to capture the features of discontinuities explicitly while reducing computational intensity.The complex fracture network is stochastically split into a number of subfracture networks according to the domain,length or angle.An analytical solution is derived to infer theoretically the relationship between the elastic moduli of the original complex fractured rock mass and the split subfractured rock masses by introducing a correction term based on the deformation superposition principle.Numerical simulations are conducted to determine the elastic moduli of split subfractured rock masses using universal distinct element code(UDEC),while the elastic modulus of the original model is estimated based on the currently proposed analytical relationship.The results show that the estimation accuracy with the current domainbased splitting model is far superior compared to those with the other two splitting models.Thus,the estimation method of elastic modulus of complex fractured rock mass based on domain splitting mode of fracture network is identified as the multi-domain equivalent method proposed in this paper.The reliability of this method is evaluated,and its high computational efficiency is demonstrated through exemplification with regard to different geometric configurations for stochastically artificial discrete fracture network.The proposed multi-domain equivalent method constructs the theoretical framework except for the regression analysis hypothesis compared to the density-reduced model equivalent method.展开更多
In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avo...In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
Joint deformity and dysfunction are common and serious complications in the late stage of rheumatoid arthritis,which seriously affect the quality of life of patients.Traditional Chinese medicine(TCM)believes that join...Joint deformity and dysfunction are common and serious complications in the late stage of rheumatoid arthritis,which seriously affect the quality of life of patients.Traditional Chinese medicine(TCM)believes that joint deformity and dysfunction in some patients with rheumatoid arthritis are closely related to the apraxia of meridians and tendons due to enduring illness.Based on the theory of meridians and tendons circulation,using the local and nearby therapeutic effect of acupoints as the treatment method in clinical practice,we conducted penetration needling of Houxi,Baxie,Wailaogong as well as Ashi points of interphalangeal joints of both hands through bilateral Sanjian,and used the uniform reinforcing-reducing method to soothe tendons and meridians,thus effectively improving the dysfunction of deformed joints.展开更多
深度积分算法可将滑坡沿地表滑动的三维模型化简为二维模型进行求解,通过减少控制方程未知量的个数以提升求解效率。物质点法(material point method,MPM)具有无网格法和有网格法的双重优势,模拟滑坡大变形问题时可避免网格畸变现象。...深度积分算法可将滑坡沿地表滑动的三维模型化简为二维模型进行求解,通过减少控制方程未知量的个数以提升求解效率。物质点法(material point method,MPM)具有无网格法和有网格法的双重优势,模拟滑坡大变形问题时可避免网格畸变现象。采用深度积分耦合物质点法建立滑坡数值模型,给出算法实现具体流程,基于影响域改进的物质点法(influence domain material point method,IDMPM),针对两个典型无倾角底面光滑和有倾角底面不光滑滑坡算例进行基准测试。在计算精度方面,深度积分耦合物质点法模型能较好地预测远端距离、流速、深度等滑移特征参数;在计算效率方面,与常规物质点法求解格式相比,深度积分耦合物质点法模型可大幅度提高运行效率。该研究成果可为滑坡地质灾害破坏范围的分析预测、危害评估、应急抢险提供有效理论依据和时间保障。展开更多
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0621)the National Natural Science Foundation of China(Grant No.52209130)Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels.
文摘In this paper we suggest and prove that Newton's method may calculate the asymptotic analytic periodic solution of strong and weak nonlinear nonautonomous systems, so that a new analytic method is offered for studying strong and weak nonlinear oscillation systems. On the strength of the need of our method, we discuss the existence and calculation of the periodic solution of the second order nonhomogeneous linear periodic system. Besides, we investigate the application of Newton's method to quasi-linear systems. The periodic solution of Duffing equation is calculated by means of our method.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225702,42077235 and 41722209).
文摘To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.
基金financial support by the National Natural Science Foundation of China(Grant Nos.52008152,U1965204,52061160367,U2067203 and 52008153)Natural Science Foundation of Hebei Province of China(Grant No.E2021202087)Hebei Department of Human Resource(Grant No.E2020050015)。
文摘Reliable estimation of deformation and failure behaviors of fractured rock mass is important for practical engineering design.This study proposes a multi-domain equivalent method for fracture network to estimate the deformation properties of complex fractured rock mass.It comprehends both the advantages of the discrete fracture network model and the equivalent continuum model to capture the features of discontinuities explicitly while reducing computational intensity.The complex fracture network is stochastically split into a number of subfracture networks according to the domain,length or angle.An analytical solution is derived to infer theoretically the relationship between the elastic moduli of the original complex fractured rock mass and the split subfractured rock masses by introducing a correction term based on the deformation superposition principle.Numerical simulations are conducted to determine the elastic moduli of split subfractured rock masses using universal distinct element code(UDEC),while the elastic modulus of the original model is estimated based on the currently proposed analytical relationship.The results show that the estimation accuracy with the current domainbased splitting model is far superior compared to those with the other two splitting models.Thus,the estimation method of elastic modulus of complex fractured rock mass based on domain splitting mode of fracture network is identified as the multi-domain equivalent method proposed in this paper.The reliability of this method is evaluated,and its high computational efficiency is demonstrated through exemplification with regard to different geometric configurations for stochastically artificial discrete fracture network.The proposed multi-domain equivalent method constructs the theoretical framework except for the regression analysis hypothesis compared to the density-reduced model equivalent method.
基金the National Natural Science Foundation of China(Grant No.41807223)the Fundamental Research Funds for the Central Universities(Grant No.B210202096)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA 23090202).
文摘In this paper,the application of Abaqus-based particle finite element method(PFEM)is extended from static to dynamic large deformation.The PFEM is based on periodic mesh regeneration with Delaunay triangulation to avoid mesh distortion.Additional mesh smoothing and boundary node smoothing techniques are incorporated to improve the mesh quality and solution accuracy.The field variables are mapped from the old to the new mesh using the closest point projection method to minimize the mapping error.The procedures of the proposed Abaqus-based dynamic PFEM(Abaqus-DPFEM)analysis and its implementation in Abaqus are detailed.The accuracy and robustness of the proposed approach are examined via four illustrative numerical examples.The numerical results show a satisfactory agreement with published results and further confirm the applicability of the Abaqus-DPFEM to solving dynamic large-deformation problems in geotechnical engineering.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.
基金Supported by National Natural Science Foundation of China(82205105).
文摘Joint deformity and dysfunction are common and serious complications in the late stage of rheumatoid arthritis,which seriously affect the quality of life of patients.Traditional Chinese medicine(TCM)believes that joint deformity and dysfunction in some patients with rheumatoid arthritis are closely related to the apraxia of meridians and tendons due to enduring illness.Based on the theory of meridians and tendons circulation,using the local and nearby therapeutic effect of acupoints as the treatment method in clinical practice,we conducted penetration needling of Houxi,Baxie,Wailaogong as well as Ashi points of interphalangeal joints of both hands through bilateral Sanjian,and used the uniform reinforcing-reducing method to soothe tendons and meridians,thus effectively improving the dysfunction of deformed joints.
文摘深度积分算法可将滑坡沿地表滑动的三维模型化简为二维模型进行求解,通过减少控制方程未知量的个数以提升求解效率。物质点法(material point method,MPM)具有无网格法和有网格法的双重优势,模拟滑坡大变形问题时可避免网格畸变现象。采用深度积分耦合物质点法建立滑坡数值模型,给出算法实现具体流程,基于影响域改进的物质点法(influence domain material point method,IDMPM),针对两个典型无倾角底面光滑和有倾角底面不光滑滑坡算例进行基准测试。在计算精度方面,深度积分耦合物质点法模型能较好地预测远端距离、流速、深度等滑移特征参数;在计算效率方面,与常规物质点法求解格式相比,深度积分耦合物质点法模型可大幅度提高运行效率。该研究成果可为滑坡地质灾害破坏范围的分析预测、危害评估、应急抢险提供有效理论依据和时间保障。