期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Investigation on sintering and deformation strengthening of Mo-Cu alloy 被引量:1
1
作者 胡保全 王延忠 刘和平 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期173-177,共5页
Mo-Swt%Cu nanocomposite powders were fabricated by mechanical alloying, and full density alloy was obtained via liquid-phase sintering and post-treatment process. The microstructure of Mo-8wt%Cu alloy was investigated... Mo-Swt%Cu nanocomposite powders were fabricated by mechanical alloying, and full density alloy was obtained via liquid-phase sintering and post-treatment process. The microstructure of Mo-8wt%Cu alloy was investigated by scanning elec-tron microscope (SEM) , and the effects of process parameters on relative density, tensile strength and elongation were stud-ied. The results indicate that the relative density of Mo-Cu alloy is 98. 6% after sintering at 1 250℃ for 30 min, and its micro-structure is composite network The full density of Mo-Cu alloy can be obtained when specimens are treated through deforma-tion strengthening process of rotating forging and hydrostatic extrusion The tensile strength and elongation rate are 576 MPa and 5. 8% ,respectively, when hydrostatic extrusion deformation degree is 40%. 展开更多
关键词 mechanical alloying Mo-Cu alloy liquid-phase sintering deformation strengthening
下载PDF
Study on gob-side entry retaining in fully-mechanized longwall with top-coal caving and its application 被引量:13
2
作者 Su Hai Bai Jianbiao +2 位作者 Yan Shuai Chen Yong Zhang Zizheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期503-510,共8页
Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and ... Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice. 展开更多
关键词 Gob-side entry retaining in fully-mechanized longwan with top coal caving Stability control of top coalLarge deformation control Roofing control and wall strengthening
下载PDF
What is going on in magnesium alloys? 被引量:55
3
作者 X.J. Wang D.K. Xu +10 位作者 R.Z. Wu X.B. Chen Q.M. Peng L. Jin Y.C. Xin Z.Q. Zhang Y. Liu X.H. Chen G. Chen K.K. Deng H.Y. Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期245-247,共3页
China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and m... China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies. 展开更多
关键词 Mg alloys Plastic deformation Strengthening Alloying design High performance Corrosion Fatigue behavior Creep Processing technologies Purification
原文传递
Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys 被引量:1
4
作者 D.H.Chung J.Lee +5 位作者 Q.F.He Y.K.Kim K.R.Lim H.S.Kim Y.Yang Y.S.Na 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期1-9,共9页
Heterostructured eutectic high-entropy alloys(EHEAs)have attracted significant attention owing to their novel properties,such as balanced combinations of strength and fracture toughness.However,the toughening/strength... Heterostructured eutectic high-entropy alloys(EHEAs)have attracted significant attention owing to their novel properties,such as balanced combinations of strength and fracture toughness.However,the toughening/strengthening mechanisms of these EHEAs have not been thoroughly investigated.In this study,we developed a series of dual-phase Al_((18–2x))Co_(30)Cr_((11+x))Fe_((11+x))Ni_(3)0(x=-1,0,1)eutectic and neareutectic HEAs containing face-centered cubic(FCC)and body-centered cubic(BCC)phases.Despite the high amount of BCC,which is referred to as the brittle phase,newly developed EHEAs exhibited superior fracture toughness.Interestingly,we discovered that a fully eutectic HEA exhibited further improvements in both yield stress and fracture toughness,outperforming our off-eutectic and other previously reported HEAs.By combining experiments and theoretical models,we demonstrated that the synergistic increase in both strength and toughness in our fully eutectic HEA was derived from the high hetero-deformationinduced(HDI)strengthening/toughening associated with a high misorientation angle at the grain/phase boundaries. 展开更多
关键词 Eutectic high entropy alloy Fracture toughness Heterogeneous structure Hetero deformation induced strengthening Misorientation angle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部