This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided ...This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.展开更多
This article discusses the existence and uniqueness of renormalized solutions for a class of degenerate parabolic equations b(u)t - div(a(u, u)) = H(u)(f + divg).
In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite ...In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.展开更多
We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) an...We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) and without any restriction on the upper growth p of nonlinearity, except that p 〉 2, we show the existences of random attractor in D0^1,2(DN, σ) space, where DN is an arbitrary (bounded or unbounded) domain in R^N N 〉 2. For this purpose, some abstract results based on the omega-limit compactness are established.展开更多
This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f...This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.展开更多
In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reacti...In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reaction diffusion terms are showed.展开更多
We study some classes of functions satisfying the assumptions similar to but weaker than those for the classical B2 function classes used in the research of quasi-linear parabolic equations as well as the ones used in...We study some classes of functions satisfying the assumptions similar to but weaker than those for the classical B2 function classes used in the research of quasi-linear parabolic equations as well as the ones used in the research of degenerate parabolic equations including porous medium equations. Consequently, we prove that a function in such a class is continuous. As an application, we obtain the estimate for the continuous modulus of the solutions of a few degenerate parabolic equations in divergence form, including the anisotropic porous equations.展开更多
In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regula...In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regularity of travelling wave front solutions depend on the parameters m,n and the wave speed c.展开更多
Longtime behavior of degenerate equations with the nonlinearity of polynomial growth of arbitrary order on the whole space RN is considered. By using-tra jectories methods, we proved that weak solutions generated by d...Longtime behavior of degenerate equations with the nonlinearity of polynomial growth of arbitrary order on the whole space RN is considered. By using-tra jectories methods, we proved that weak solutions generated by degenerate equations possess an(LU^2(R^N), Lloc^2(R^N))-global attractor.Moreover, the upper bounds of the Kolmogorov ε-entropy for such global attractor are also obtained.展开更多
In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is der...In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is derived when the blow-up does occur.展开更多
In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq...In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq/ t=▽α·(‖z‖^-2γ▽αu^m)+V(z, t)u^m, uq/ t=u^μ▽α·(u^τ|▽αu|^p-2▽αu)+V(z, t)u^p-1+μ+τin a cylinder Ω×(0, T) with initial condition u(z, 0)=u0(z) ≥ 0 and vanishing on the boundary Ω×(0, T), where Ω is a Carnot-Carathéodory metric ball in Rd+k and the time-dependent singular potential function is V(z, t) ∈ L^1loc (Ω×(0, T)). We investigate the nonexistence of positive solutions of these three problems and present our results on nonexistence.展开更多
The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,...The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,u(w,t)=0,inΩ×(0,T),inΩ,on∂Ω×(0,T),where Q is a Carnot-Carathéodory metric bal in IR^(2n+1)generated by Greiner vector fields,V∈L_(loc)(Ω),k∈N,m∈R,1<p<2n+2k and m+p-2>0.The better lower bound p*for m+p is found and the nonexistence results are proved for p*≤m+p<3.展开更多
The homogenization of a class of degenerate quasilinear parabolic equations is studied. The Ap weight theory and the classical compensated compactness method are incorporated to obtain the homogenized equation.
in this work,we study the quasilinear initial-boundary value problem , where is a system of real smooth vector fields which is defined on an open domain M of R'', and satisfies the Hormanderls condition,.Assu...in this work,we study the quasilinear initial-boundary value problem , where is a system of real smooth vector fields which is defined on an open domain M of R'', and satisfies the Hormanderls condition,.Assume that is non characteristic for the system X,,..',Xm. Under some hypothesis for the boundary of domain and the elliptic structure condition for nonlinear coerfficients Aij, Bj, C,(i, j= 1, ..', m), we have proved that the existence and regularity of solution for aboveinitialboudary value problems.展开更多
This paper is devoted to the time periodic solutions to the degenerate parabolic equations of the form under the Dirichlet boundary value condition, where m>1, p≥0, Ω■RN is a bounded domain with smooth boundary б...This paper is devoted to the time periodic solutions to the degenerate parabolic equations of the form under the Dirichlet boundary value condition, where m>1, p≥0, Ω■RN is a bounded domain with smooth boundary бΩ and a,b are positive, smooth functions which are periodic in t with period ω>0. The existence of nontrivial nonnegative solutions is established provided that 0≤p<m. The existence is also proved in the case p=m but with an additional assumption man a(x,t)>λ1, Q where Al is the first eigenvalue of the operator -△ under the homogeneous Dirichlet boundary condition.展开更多
In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
In this article, it is shown that there exists a unique viscosity solution of the Cauchy problem for a degenerate parabolic equation with non-divergence form.
The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the ...The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the homogenization theory.展开更多
This article studies the Cauchy problem for a class of doubly nonlinear degenerate parabolic equations au/at = div(A(|△↓B(u)|)△↓B(u)). Under certain conditions, the author considers its regularized probl...This article studies the Cauchy problem for a class of doubly nonlinear degenerate parabolic equations au/at = div(A(|△↓B(u)|)△↓B(u)). Under certain conditions, the author considers its regularized problem and establishes some estimates. On the basis of the estimates, the existence and uniqueness of the generalized solutions in BV space are proved.展开更多
基金supported by the National Natural Science Foundations of China(10971061)Hunan Provincial Natural Science Foundation of China (09JJ6013)
文摘This article deals with the degenerate parabolic equations in exterior domains and with inhomogeneous Dirichlet boundary conditions. We obtain that pc = (σ + m )n / ( n-σ- 2 ) is its critical exponent provided max{-1, [ (1- m )n- 2] / ( n + l ) } 〈 σ 〈 n- 2. This critical exponent is not the same as that for the corresponding equations with the boundary value 0, but is more closely tied to the critical exponent of the elliptic type degenerate equations. Futhermore, we demonstrate that if max(1, σ + m) 〈 p 〈 pc, then every positive solution of the equations blows up in finite time; whereas for p 〉 pc, the equations admit global positive solutions for some boundary values and initial data. Meantime, we also demonstrate that its positive solutions blow up in finite time provided n〈σ+2.
基金supported by Science Foundation of Xiamen University of Technology (YKJ08020R)
文摘This article discusses the existence and uniqueness of renormalized solutions for a class of degenerate parabolic equations b(u)t - div(a(u, u)) = H(u)(f + divg).
基金This work is supported in part by NNSF of China(10571126)in part by Program for New Century Excellent Talents in University
文摘In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.
基金supported by China NSF(11271388)Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1400430)Basis and Frontier Research Project of Chongqing(cstc2014jcyj A00035)
文摘We study the regularity of random attractors for a class of degenerate parabolic equations with leading term div(o(x)↓△u) and multiplicative noises. Under some mild conditions on the diffusion variable o(x) and without any restriction on the upper growth p of nonlinearity, except that p 〉 2, we show the existences of random attractor in D0^1,2(DN, σ) space, where DN is an arbitrary (bounded or unbounded) domain in R^N N 〉 2. For this purpose, some abstract results based on the omega-limit compactness are established.
基金The NSFC(10371050)and the"985"program of Jilin University.
文摘This paper deals with a class of doubly degenerate parabolic equations, including as particular cases the porous medium equation and the degenerate pLaplace equation (p 〉 2)ut-div(b(x,t,u)|↓△u|^p-2↓△u)=f(x,u,t)The initial-boundary value problem in a bounded domain of R^N is considered under mixed boundary conditions. The existence of local-in-time weak solutions is obtained.
文摘In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reaction diffusion terms are showed.
基金This work was partially supported by the University of Nancy Iby National 973-Project from MOST as well as well Trans-Century Training Programme Foundation for the Talents by Ministry of Education
文摘We study some classes of functions satisfying the assumptions similar to but weaker than those for the classical B2 function classes used in the research of quasi-linear parabolic equations as well as the ones used in the research of degenerate parabolic equations including porous medium equations. Consequently, we prove that a function in such a class is continuous. As an application, we obtain the estimate for the continuous modulus of the solutions of a few degenerate parabolic equations in divergence form, including the anisotropic porous equations.
基金This project is supported by the Notional Natural Science Foundation of China
文摘In this paper,we study the existence and regularity of travelling wave front solutions for some degenerate parabolic equations (u^m/m)t=u_(xx)+u^nf(u),where m,n>0 and f(u)~1-u.We show that the existence and regularity of travelling wave front solutions depend on the parameters m,n and the wave speed c.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NS2014075)
文摘Longtime behavior of degenerate equations with the nonlinearity of polynomial growth of arbitrary order on the whole space RN is considered. By using-tra jectories methods, we proved that weak solutions generated by degenerate equations possess an(LU^2(R^N), Lloc^2(R^N))-global attractor.Moreover, the upper bounds of the Kolmogorov ε-entropy for such global attractor are also obtained.
基金Supported by the National Nature Science Foundation of China(Grant No.7117116411426176)Foundation of Guizhou Science and Technology Department(Grant No.[2015]2076)
文摘In this paper, we study the nonexistence and longtime behavior of weak solution for the degenerate parabolic equation σtun=umdiv(|▽um|p-2▽um)+γ|▽um|p+βun with zero boundary condition. Blow-up time is derived when the blow-up does occur.
基金Supported by Nature Science Fund of Shaanxi Province(Grant No.2012JM1014)
文摘In this paper, we are concerned with the following three types of nonlinear degenerate parabolic equations with time-dependent singular potentials: uq/ t=▽α·(‖z‖^-pγ|▽αu|^p-2▽αu)+V(z, t)u^p-1, uq/ t=▽α·(‖z‖^-2γ▽αu^m)+V(z, t)u^m, uq/ t=u^μ▽α·(u^τ|▽αu|^p-2▽αu)+V(z, t)u^p-1+μ+τin a cylinder Ω×(0, T) with initial condition u(z, 0)=u0(z) ≥ 0 and vanishing on the boundary Ω×(0, T), where Ω is a Carnot-Carathéodory metric ball in Rd+k and the time-dependent singular potential function is V(z, t) ∈ L^1loc (Ω×(0, T)). We investigate the nonexistence of positive solutions of these three problems and present our results on nonexistence.
基金support from Nature Science Fund of China(No.11771354).
文摘The purpose of this paper is to investigate the nonexistence of positive so lutions of the following doubly nonlinear degenerate parabolic equations:{∂u=▽k·(u^(m-1)|▽ku|^(p-2)▽ku)+(w)u^(m+p-2),u(w,0)=u0(w)≥0,u(w,t)=0,inΩ×(0,T),inΩ,on∂Ω×(0,T),where Q is a Carnot-Carathéodory metric bal in IR^(2n+1)generated by Greiner vector fields,V∈L_(loc)(Ω),k∈N,m∈R,1<p<2n+2k and m+p-2>0.The better lower bound p*for m+p is found and the nonexistence results are proved for p*≤m+p<3.
基金the Foundations of Returned Overseas Chinese Education Ministry and the Key Teachers Foundation of Chongqing University.
文摘The homogenization of a class of degenerate quasilinear parabolic equations is studied. The Ap weight theory and the classical compensated compactness method are incorporated to obtain the homogenized equation.
文摘in this work,we study the quasilinear initial-boundary value problem , where is a system of real smooth vector fields which is defined on an open domain M of R'', and satisfies the Hormanderls condition,.Assume that is non characteristic for the system X,,..',Xm. Under some hypothesis for the boundary of domain and the elliptic structure condition for nonlinear coerfficients Aij, Bj, C,(i, j= 1, ..', m), we have proved that the existence and regularity of solution for aboveinitialboudary value problems.
基金the National Natural Sciences Foundation of Chinathe project of Differential Equation and Application.
文摘This paper is devoted to the time periodic solutions to the degenerate parabolic equations of the form under the Dirichlet boundary value condition, where m>1, p≥0, Ω■RN is a bounded domain with smooth boundary бΩ and a,b are positive, smooth functions which are periodic in t with period ω>0. The existence of nontrivial nonnegative solutions is established provided that 0≤p<m. The existence is also proved in the case p=m but with an additional assumption man a(x,t)>λ1, Q where Al is the first eigenvalue of the operator -△ under the homogeneous Dirichlet boundary condition.
基金Supported by the NNSF of China(10441002)Supported by NNSF of Henan Province(200510466011)
文摘In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
基金Supported in part by Dalian Nationalities University (20076209)Departmentof Education of Liaoning Province (2009A152)National Natural Science Foundation of China (10471156,10901030)
文摘In this article, it is shown that there exists a unique viscosity solution of the Cauchy problem for a degenerate parabolic equation with non-divergence form.
基金Funded by the Scientific Research Foundation for Returned Overseas Chinese Scholars under the State Education Ministry, and the Key Teachers’ Foundation of Chongqing University.
文摘The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the homogenization theory.
文摘This article studies the Cauchy problem for a class of doubly nonlinear degenerate parabolic equations au/at = div(A(|△↓B(u)|)△↓B(u)). Under certain conditions, the author considers its regularized problem and establishes some estimates. On the basis of the estimates, the existence and uniqueness of the generalized solutions in BV space are proved.