Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmande...Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω.展开更多
In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results...In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results on the existence of weak solution are established. In addition, under certain condition the uniqueness of solution is proved.展开更多
In this paper we study the regularity theory of the solutions of a class of degenerate elliptic equations in divergence form. By introducing a proper distance and applying the compactness method we establish the HSlde...In this paper we study the regularity theory of the solutions of a class of degenerate elliptic equations in divergence form. By introducing a proper distance and applying the compactness method we establish the HSlder type estimates for the weak solutions.展开更多
Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 t...Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 to m Xj Xj.展开更多
Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux ...Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.展开更多
In this article, the author investigates some Hermite elliptic equations in a modified Sobolev space introduced by X. Ding [2]. First, the author shows the existence of a ground state solution of semilinear Hermite el...In this article, the author investigates some Hermite elliptic equations in a modified Sobolev space introduced by X. Ding [2]. First, the author shows the existence of a ground state solution of semilinear Hermite elliptic equation. Second, the author studies the eigenvalue problem of linear Hermite elliptic equation in a bounded or unbounded domain.展开更多
The present paper deals with the mixed boundary value problem for elliptic equations with degenerate rank 0. We first give the formulation of the problem and estimates of solutions of the problem, and then prove the e...The present paper deals with the mixed boundary value problem for elliptic equations with degenerate rank 0. We first give the formulation of the problem and estimates of solutions of the problem, and then prove the existence of solutions of the above problem for elliptic equations by the above estimates and the method of parameter extension. We use the complex method, namely first discuss the corresponding problem for degenerate elliptic complex equations of first order, afterwards discuss the above problem for degenerate elliptic equations of second order展开更多
In this paper we consider the Dirichlet problems of a non-uniformly digenerate elliptic equations of the formwhose prototype iswhere n C 1 N is a bounded domain,0<b(x)<1,0<o<P.We establish that if Aand B a...In this paper we consider the Dirichlet problems of a non-uniformly digenerate elliptic equations of the formwhose prototype iswhere n C 1 N is a bounded domain,0<b(x)<1,0<o<P.We establish that if Aand B are under some structure conditions and 0<or S P<max{aam +k,o+1}tthen there exists a CI+o-solution of(0.1)associated with the Dirichlet boundary dsta.展开更多
In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate pa...In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.展开更多
This paper is focused on studying the structure of solutions bounded from below to degenerate elliptic equations with Neumann and Dirichlet boundary conditions in unbounded domains.After establishing the weak maximum ...This paper is focused on studying the structure of solutions bounded from below to degenerate elliptic equations with Neumann and Dirichlet boundary conditions in unbounded domains.After establishing the weak maximum principles,the global boundary Holder estimates and the boundary Harnack inequalities of the equations,we show that all solutions bounded from below are linear combinations of two special solutions(exponential growth at one end and exponential decay at the other)with a bounded solution to the degenerate equations.展开更多
The Hoider continuity is proved to bounded solutions of degenerate elliptic e-quations involving measures. The structural conditions of the equation are more general and therestrictions on the structural coofficients ...The Hoider continuity is proved to bounded solutions of degenerate elliptic e-quations involving measures. The structural conditions of the equation are more general and therestrictions on the structural coofficients are weaker.展开更多
基金partially supported by the NSFC(11631011,11626251)
文摘Let Ω be a bounded open domain in Rn with smooth boundary Ω, X =(X1,X2,... ,Xm) be a system of real smooth vector fields defined on Ω and the bound-ary Ω is non-characteristic for X. If X satisfies the HSrmander's condition, then the vectorfield is finitely degenerate and the sum of square operator △X =m∑j=1 X2 j is a finitely de-generate elliptic operator. In this paper, we shall study the sharp estimate of the Dirichlet eigenvalue for a class of general Grushin type degenerate elliptic operators △x on Ω.
文摘In this paper, the first boundary value problem for quasilinear equation of the form △A(u,x)+∑i=1^m δb^i(u,x)/δxi+c(u,x)=0,Au(u,x) ≥0is studied. By using the compensated compactness theory, some results on the existence of weak solution are established. In addition, under certain condition the uniqueness of solution is proved.
文摘In this paper we study the regularity theory of the solutions of a class of degenerate elliptic equations in divergence form. By introducing a proper distance and applying the compactness method we establish the HSlder type estimates for the weak solutions.
基金supported by Natural Science Foundation of China (10971199)Natural Science Foundations of Henan Province (092300410067)
文摘Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 to m Xj Xj.
基金supported by the Research Council of Norway through theprojects Nonlinear Problems in Mathematical Analysis Waves In Fluids and Solids+2 种基金 Outstanding Young Inves-tigators Award (KHK), the Russian Foundation for Basic Research (grant No. 09-01-00490-a) DFGproject No. 436 RUS 113/895/0-1 (EYuP)
文摘Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.
基金supported in part by NSFC (10471138)NSFC-NSAF (10676037)973 project of China (2006CB805902)
文摘In this article, the author investigates some Hermite elliptic equations in a modified Sobolev space introduced by X. Ding [2]. First, the author shows the existence of a ground state solution of semilinear Hermite elliptic equation. Second, the author studies the eigenvalue problem of linear Hermite elliptic equation in a bounded or unbounded domain.
文摘The present paper deals with the mixed boundary value problem for elliptic equations with degenerate rank 0. We first give the formulation of the problem and estimates of solutions of the problem, and then prove the existence of solutions of the above problem for elliptic equations by the above estimates and the method of parameter extension. We use the complex method, namely first discuss the corresponding problem for degenerate elliptic complex equations of first order, afterwards discuss the above problem for degenerate elliptic equations of second order
文摘In this paper we consider the Dirichlet problems of a non-uniformly digenerate elliptic equations of the formwhose prototype iswhere n C 1 N is a bounded domain,0<b(x)<1,0<o<P.We establish that if Aand B are under some structure conditions and 0<or S P<max{aam +k,o+1}tthen there exists a CI+o-solution of(0.1)associated with the Dirichlet boundary dsta.
文摘In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.
文摘This paper is focused on studying the structure of solutions bounded from below to degenerate elliptic equations with Neumann and Dirichlet boundary conditions in unbounded domains.After establishing the weak maximum principles,the global boundary Holder estimates and the boundary Harnack inequalities of the equations,we show that all solutions bounded from below are linear combinations of two special solutions(exponential growth at one end and exponential decay at the other)with a bounded solution to the degenerate equations.
文摘The Hoider continuity is proved to bounded solutions of degenerate elliptic e-quations involving measures. The structural conditions of the equation are more general and therestrictions on the structural coofficients are weaker.