Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediate...Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediated blue light signaling. We report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent pathway. Light, irrespective of its quality, enhances HFR1 protein accumulation via promoting its stabilization. We demonstrate that HFR1 physically interacts with COP1 and that COP1 exhibits ubiquitin ligase activity toward HFR1 in vitro. In addition, we show that COP1 is required for degradation of HFR1 in vivo. Furthermore, plants overexpressing a C-terminal 161 amino acid fragment of HFR1 (CT161) display enhanced photomorphogenesis, suggesting an autonomous function of CT161 in promoting light signaling. This truncated HFR1 gene product is more stable than the full-length HFR1 protein in darkness, indicating that the COP1-interacting N-terminal portion of HFR1 is essential for COP1-mediated destabilization of HFR1. These results suggest that light enhances HFR1 protein accumulation by abrogating COP1-mediated degradation of HFR1, which is necessary and sufficient for promoting light signaling. Additionally, our results substantiate the E3 ligase activity of COP1 and its critical role in desensitizing light signaling.展开更多
Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference...Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference subcircuit is the critical component which leads to the 1/f noise degradation of the LM117. The radiation makes the base surface current of the bipolar junction transistors of the band-gap reference subcircuit increase, which leads to an increase in the output 1/f noise of the LM117. Compared to the output voltage, the 1/f noise parameter is more sensitive, it may be used to evaluate the radiation resistance capability of LM117.展开更多
As implanted bone fixation materials,magnesium(Mg)alloys have significant advantages because the density and elastic modulus are closest to those of the human bone and they can bio-degrade in the physiological environ...As implanted bone fixation materials,magnesium(Mg)alloys have significant advantages because the density and elastic modulus are closest to those of the human bone and they can bio-degrade in the physiological environment.However,Mg alloys degrade too rapidly and uncontrollably thus hampering clinical adoption.In this study,a highly corrosion-resistant zinc-phosphate-doped micro-arc oxidation(MAO)coating is prepared on the AZ31B alloy,and the degradation process is assessed in vitro.With increasing zinc phosphate concentrations,both the corrosion potentials and charge transfer resistance of the AZ31B alloy coated with MAO coatings increase gradually,while the corrosion current densities di-minish gradually.Immersion tests in the simulated body fluid(SBF)reveal that the increased zinc phos-phate concentration in MAO coating decreases the degradation rate,consequently reducing the release rates of Mg^(2+)and OH-in the physiological micro-environment,which obtains the lowest weight loss of only 5.22%after immersion for 56 days.Effective regulation of degradation provides a weak alkaline environment that is suitable for long-term cell growth and subsequent promotion of bone proliferation,differentiation,mineralization,and cytocompatibility.In addition,the zinc-phosphate-doped MAO coat-ings show an improved wear resistance as manifested by a wear rate of only 3.81 x 10^(-5) mm^(3) N^(-1) m^(-1).The results reveal a suitable strategy to improve the properties of biodegradable Mg alloys to balance tissue healing with mechanical degradation.展开更多
文摘Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediated blue light signaling. We report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent pathway. Light, irrespective of its quality, enhances HFR1 protein accumulation via promoting its stabilization. We demonstrate that HFR1 physically interacts with COP1 and that COP1 exhibits ubiquitin ligase activity toward HFR1 in vitro. In addition, we show that COP1 is required for degradation of HFR1 in vivo. Furthermore, plants overexpressing a C-terminal 161 amino acid fragment of HFR1 (CT161) display enhanced photomorphogenesis, suggesting an autonomous function of CT161 in promoting light signaling. This truncated HFR1 gene product is more stable than the full-length HFR1 protein in darkness, indicating that the COP1-interacting N-terminal portion of HFR1 is essential for COP1-mediated destabilization of HFR1. These results suggest that light enhances HFR1 protein accumulation by abrogating COP1-mediated degradation of HFR1, which is necessary and sufficient for promoting light signaling. Additionally, our results substantiate the E3 ligase activity of COP1 and its critical role in desensitizing light signaling.
基金Project supported by the National Natural Science Foundation of China(Nos.61076101,61204092)
文摘Radiation-induced 1/f noise degradation in the LM117 bipolar linear voltage regulator is studied. Based on the radiation-induced degradation mechanism of the output voltage, it is suggested that the band-gap reference subcircuit is the critical component which leads to the 1/f noise degradation of the LM117. The radiation makes the base surface current of the bipolar junction transistors of the band-gap reference subcircuit increase, which leads to an increase in the output 1/f noise of the LM117. Compared to the output voltage, the 1/f noise parameter is more sensitive, it may be used to evaluate the radiation resistance capability of LM117.
基金Shenzhen-Hong Kong Research and Development Fund(No.SGDX20201103095406024)2022 Shenzhen Sustainable Supporting Funds for Colleges and Universities(No.20220810143642004)+9 种基金Shenzhen Basic Research Project(Nos.JCYJ20200109144608205 and JCYJ20210324120001003)Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515011301 and 2021A1515012246)Peking University Shenzhen Graduate School Research Start-up Fund of Introducing Talent(No.1270110273)Shenzhen Postdoctoral Research Fund Project after Outbound(No.2129933651)China Postdoctoral Science Foundation(No.2023M730032)City University of Hong Kong Strategic Research Grants(SRG)(7005505)City University of Hong Kong Donation Research Grants(No.9220061 and DON-RMG No.9229021)Guangdong-Hong Kong Technology Cooperation Funding Scheme(TCFS)(No.GHP/085/18SZ)Shenzhen-Hong Kong Technology Cooperation Funding Scheme(TCFS)(No.GHP/149/20SZ and CityU 9440296)IER Foundation(Nos.IERF2020001 and IERF202102).
文摘As implanted bone fixation materials,magnesium(Mg)alloys have significant advantages because the density and elastic modulus are closest to those of the human bone and they can bio-degrade in the physiological environment.However,Mg alloys degrade too rapidly and uncontrollably thus hampering clinical adoption.In this study,a highly corrosion-resistant zinc-phosphate-doped micro-arc oxidation(MAO)coating is prepared on the AZ31B alloy,and the degradation process is assessed in vitro.With increasing zinc phosphate concentrations,both the corrosion potentials and charge transfer resistance of the AZ31B alloy coated with MAO coatings increase gradually,while the corrosion current densities di-minish gradually.Immersion tests in the simulated body fluid(SBF)reveal that the increased zinc phos-phate concentration in MAO coating decreases the degradation rate,consequently reducing the release rates of Mg^(2+)and OH-in the physiological micro-environment,which obtains the lowest weight loss of only 5.22%after immersion for 56 days.Effective regulation of degradation provides a weak alkaline environment that is suitable for long-term cell growth and subsequent promotion of bone proliferation,differentiation,mineralization,and cytocompatibility.In addition,the zinc-phosphate-doped MAO coat-ings show an improved wear resistance as manifested by a wear rate of only 3.81 x 10^(-5) mm^(3) N^(-1) m^(-1).The results reveal a suitable strategy to improve the properties of biodegradable Mg alloys to balance tissue healing with mechanical degradation.