期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Screening of a microbial consortium with efficient corn stover degradation ability at low temperature 被引量:12
1
作者 Qinggeer GAO Ju-lin +7 位作者 YU Xiao-fang ZHANG Bao-lin WANG Zhi-gang Borjigin Naoganchaolu HU Shu-ping SUN Ji-ying XIE Min WANG Zhen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2369-2379,共11页
To speed up the degradation of corn stover directly returned to soil at low temperature, the corn stover-degrading microbial consortium GF-20, acclimated to biological decomposition in the frigid region, was successfu... To speed up the degradation of corn stover directly returned to soil at low temperature, the corn stover-degrading microbial consortium GF-20, acclimated to biological decomposition in the frigid region, was successfully constructed under a long-term limiting substrate. To evaluate its potential in accelerating the decomposition of un-pretreated corn stover, the decomposing property, fermentation dynamic and the microbial diversity were analyzed. GF-20 degraded corn stover by 32% after 15-day fermentation at 10℃. Peak activities of filter paperlyase(FPA), β-glucosidases(CB), endoglucanases(Cx), and cellobiohydrolases(C1) were 1.15, 1.67, 1.73, and 1.42 U m L^–1, appearing at the 6th, 3rd, 11 th, and 9th d, respectively. The p H averaged at 6.73–8.42, and the optical density(OD) value peaked at 1.87 at the 120 h of the degradation process. Cellulase, hemicellulase and lignin in corn stover were persistently degraded by 44.85, 43.85 and 25.29% at the end of incubation. Result of denaturing gradient gel electrophoresis(DGGE) profiles demonstrated that GF-20 had a stable component structure under switching the temperature and p H. The composition of the GF-20 was also analyzed by constructing bacterial 16 S r DNA clone library and fungal 18 Sr DNA-PCR-DGGE. Twenty-two bacterial clones and four fungal bands were detected and identified dominant bacteria represented by Cellvibrio mixtus subsp., Azospira oryzae, Arcobacter defluyii, and Clostridium populeti and the fungi were mainly identified as related to Trichosporon sp. 展开更多
关键词 corn stover degradation microbial consortium low temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部