This study introduces an advanced finite element model for the light weight deflectometer(LWD),which integrates contact mechanics with fully coupled models.By simulating LWD tests on granular soils at various saturati...This study introduces an advanced finite element model for the light weight deflectometer(LWD),which integrates contact mechanics with fully coupled models.By simulating LWD tests on granular soils at various saturation levels,the model accurately reflects the dependence of the LWD modulus on dry density,water content,and effective stress.This model addresses and overcomes the limitations of previous finite element models for this specific problem.Simultaneously,this research presents the first experimentally validated fully coupled contact impact model.Furthermore,the research provides a comparative assessment of elastoplastic and nonlinear elastic models and contrasts an enriched node-tosegment method(developed in this study)with the more precise mortar technique for contact mechanics.These comparisons reveal unique advantages and challenges for each method.Moreover,the study underscores the importance of careful application of the LWD modulus,emphasising the need for sophisticated tools to interpret soil behaviour accurately.展开更多
Bentonite,consisting of clay minerals of the montmorillonite group,has been widely used as an adsorbent and backfill material in nuclear waste disposal and groundwater remediation.It is challenging to use bentonite as...Bentonite,consisting of clay minerals of the montmorillonite group,has been widely used as an adsorbent and backfill material in nuclear waste disposal and groundwater remediation.It is challenging to use bentonite as a filling material in cold regions since bentonite is highly sensitive to thermal environmental changes,during which its bulk volume and microstructure change significantly.In this study,a series of one-dimensional and three-dimensional freeze-thaw tests were carried out within a closed system to investigate the influencing factors of the deformation of bentonite under freeze-thaw cycles.Results show that the initial soil water content greatly impacts bentonite's deformation during freeze-thaw cycles.For an initial higher degree of saturation(Sr),the expansion caused by the formation of ice lenses has a greater impact than the shrinkage induced by dehydration,ice-cementation,and so on.Conversely,bentonite tends to shrink at a lower degree of saturation during freezing.And the critical degree of saturation that determines bentonite's behavior of frost heave or frost shrinkage seems to be roughly 0.8.As the number of freeze-thaw cycles rises,initially uncompacted bentonite clay becomes more compacted,and initially compacted bentonite clay remains unchanged.展开更多
Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) ...Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.展开更多
For the development of alert systems for soil slip occurrence, it is important to evaluate the degree of saturation of shallow soils (Sr) over wide areas. Taking into account the possibility to estimate spatial and te...For the development of alert systems for soil slip occurrence, it is important to evaluate the degree of saturation of shallow soils (Sr) over wide areas. Taking into account the possibility to estimate spatial and temporal variation of soil moisture using remote sensing techniques, a possible correlation between Sr and the daily output of a sequential data assimilation system called ACHAB (Assimilation Code for HeAt and moisture Balance) has been studied. ACHAB is based on integrated use of remotely sensed land surface temperature (LST) and common data on meteorological forcing such as air temperature, wind-speed and incident solar radiation. The aim of this study is to understand if it is possible to use ACHAB output (a daily value of evaporative fraction for the whole Italian territory) to define the parameter Sr that could be introduced in a simplified model for the description of soil slip triggering mechanisms on territorial scale.展开更多
The aim of this study is to scrutinize whether, in terms of saturation, the 48 hour duration suggested by ISRM(International Society for Rock Mechanics) methods and ASTM(American Society for Testing and Materials) sta...The aim of this study is to scrutinize whether, in terms of saturation, the 48 hour duration suggested by ISRM(International Society for Rock Mechanics) methods and ASTM(American Society for Testing and Materials) standard in rocks is sufficient or not, and to examine how the degree of saturation of rocks may be determined as a function of time. For this purpose, samples from five different rock groups including igneous(andesite, granite, andesitic tuff) and sedimentary(limestone, sandstone) exposed in Gümü?hane city which is from mountainous area of north-eastern Turkey, have been compiled. Measurements were taken on the samples left for saturation under laboratory conditions as a result of which the degree of saturation values at the end of these time periods were determined. Similarly, at the end of 48 hours, the samples were left to dry under atmospheric conditions in the laboratory environment and their time dependent degree of saturation were also calculated at different times. The changes as a function of time in the degree of saturation were then examined mathematically using non-linear, exponential and logarithmic functions. Graphs and equations related with the acquired time-degree of saturation values and the correlation coefficient(r) values for these equalities have indicated a high accordance between time and degree of saturation for the studied rock groups. The applied methodology will be beneficial for determining the degree of saturation based on time for engineering studies that will be carried out in similar lithologies.展开更多
In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order f...In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).展开更多
FeSiAl alloys ribbons synthesized by melt-quench were annealed in vacuum at 873 K for 60 rain. The flaky powders were prepared by milling the annealed ribbons for 70 h. After milling, the powders were heat treated at ...FeSiAl alloys ribbons synthesized by melt-quench were annealed in vacuum at 873 K for 60 rain. The flaky powders were prepared by milling the annealed ribbons for 70 h. After milling, the powders were heat treated at 573 K for 90 rain. The ordering degree of the powders lattice structure was analyzed by X-ray diffraction (XRD). The measurement of specific saturation magnetization was carried out by vibrating samples magnetometer (VSM). Complex permittivity and complex permeability in the frequency band of 0.5-18 GHz were measured with the vector network analyzer. The ordering degree of the superlattice structure increased from 0.2'7 to 0.49. Complex permittivity and complex permeability decreased with increasing Si content. After ordering, the specific saturation magnetization decreased from 134.2 to 85.0 A.m2.kg-1. For use in anti-EMI material, the total contents of Si and Al in FeSiAl alloys should be controlled at a low level.展开更多
Growth of phytoplankton, zooplankton and probably most other marine organisms as well, is likely to be affected by the pH of seawater. Growth of calcareous shells and skeletons is less likely to be affect ed by the sa...Growth of phytoplankton, zooplankton and probably most other marine organisms as well, is likely to be affected by the pH of seawater. Growth of calcareous shells and skeletons is less likely to be affect ed by the saturation states of calcite and aragonite but the dissolution is. The increase of CO2 in the oceans due to burning of fossil fuel and clearing of forests is decreasing the pH of seawater and the degress of saturation for calcite and aragonite worldwide. This paper presents the results of the first attempt to estimate the vertical distribution of anthropogenic CO2, and the decreases in pH and the degrees of saturation of calcite and aragonite in seawater near Taiwan. Most ef fects are very small except for the possible dissolution of aragonite on the upper continental slope starting around 2050 AD.展开更多
The 'o' saturation theorem and the degree of Lwp, approximation by (0 - q' - q) type Hermite-Fejer interpolating polynomials for mean convergence are obtained.
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines...This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.展开更多
基金This research work is part of a research project(Grant No.IH18.03.1)sponsored by the SPARC Hub at the Department of Civil Engineering,Monash University funded by the Australian Research Council(ARC)Industrial Transformation Research Hub(ITRH)Scheme(Grant No.IH180100010).
文摘This study introduces an advanced finite element model for the light weight deflectometer(LWD),which integrates contact mechanics with fully coupled models.By simulating LWD tests on granular soils at various saturation levels,the model accurately reflects the dependence of the LWD modulus on dry density,water content,and effective stress.This model addresses and overcomes the limitations of previous finite element models for this specific problem.Simultaneously,this research presents the first experimentally validated fully coupled contact impact model.Furthermore,the research provides a comparative assessment of elastoplastic and nonlinear elastic models and contrasts an enriched node-tosegment method(developed in this study)with the more precise mortar technique for contact mechanics.These comparisons reveal unique advantages and challenges for each method.Moreover,the study underscores the importance of careful application of the LWD modulus,emphasising the need for sophisticated tools to interpret soil behaviour accurately.
基金supported by the National Natural Science Foundation of China(Nos.42072316,51979002).
文摘Bentonite,consisting of clay minerals of the montmorillonite group,has been widely used as an adsorbent and backfill material in nuclear waste disposal and groundwater remediation.It is challenging to use bentonite as a filling material in cold regions since bentonite is highly sensitive to thermal environmental changes,during which its bulk volume and microstructure change significantly.In this study,a series of one-dimensional and three-dimensional freeze-thaw tests were carried out within a closed system to investigate the influencing factors of the deformation of bentonite under freeze-thaw cycles.Results show that the initial soil water content greatly impacts bentonite's deformation during freeze-thaw cycles.For an initial higher degree of saturation(Sr),the expansion caused by the formation of ice lenses has a greater impact than the shrinkage induced by dehydration,ice-cementation,and so on.Conversely,bentonite tends to shrink at a lower degree of saturation during freezing.And the critical degree of saturation that determines bentonite's behavior of frost heave or frost shrinkage seems to be roughly 0.8.As the number of freeze-thaw cycles rises,initially uncompacted bentonite clay becomes more compacted,and initially compacted bentonite clay remains unchanged.
基金Foundation item: Project(2012CB719803) supported by the National Basic Research Program of China Project(201011159098) supported by the Seed Funding for Basic Research Scheme from The University of Hong Kong, China
文摘Laboratory tests were performed on Toyoura sand specimens to investigate the relationship between degree of saturation Sr, B-value and P-wave velocity Vp. Different types of pore water (de-aired water or tap water) and pore gas (air or CO2) as well as different magnitudes of back pressure were used to achieve different Sr (or B-value). The measured relationship between B-value and Vp was not consistent with the theoretical prediction. The measurement shows that the Vp value in the specimen flushed with de-aired water is independent of B-value (or St) and is always around the one in fully saturated condition. However, the Vp value in the specimen flushed with tap water increases with B-value, but the shape of the relationship between Vp and B-value is quite different from the theoretical prediction. The possible explanation for the discrepancy between laboratory measurement and theoretical prediction lies in that the air exists in the water as air bubbles and therefore the pore fluid (air-water mixture) is heterogeneous instead of homogenous assumed in the theoretical prediction.
文摘For the development of alert systems for soil slip occurrence, it is important to evaluate the degree of saturation of shallow soils (Sr) over wide areas. Taking into account the possibility to estimate spatial and temporal variation of soil moisture using remote sensing techniques, a possible correlation between Sr and the daily output of a sequential data assimilation system called ACHAB (Assimilation Code for HeAt and moisture Balance) has been studied. ACHAB is based on integrated use of remotely sensed land surface temperature (LST) and common data on meteorological forcing such as air temperature, wind-speed and incident solar radiation. The aim of this study is to understand if it is possible to use ACHAB output (a daily value of evaporative fraction for the whole Italian territory) to define the parameter Sr that could be introduced in a simplified model for the description of soil slip triggering mechanisms on territorial scale.
文摘The aim of this study is to scrutinize whether, in terms of saturation, the 48 hour duration suggested by ISRM(International Society for Rock Mechanics) methods and ASTM(American Society for Testing and Materials) standard in rocks is sufficient or not, and to examine how the degree of saturation of rocks may be determined as a function of time. For this purpose, samples from five different rock groups including igneous(andesite, granite, andesitic tuff) and sedimentary(limestone, sandstone) exposed in Gümü?hane city which is from mountainous area of north-eastern Turkey, have been compiled. Measurements were taken on the samples left for saturation under laboratory conditions as a result of which the degree of saturation values at the end of these time periods were determined. Similarly, at the end of 48 hours, the samples were left to dry under atmospheric conditions in the laboratory environment and their time dependent degree of saturation were also calculated at different times. The changes as a function of time in the degree of saturation were then examined mathematically using non-linear, exponential and logarithmic functions. Graphs and equations related with the acquired time-degree of saturation values and the correlation coefficient(r) values for these equalities have indicated a high accordance between time and degree of saturation for the studied rock groups. The applied methodology will be beneficial for determining the degree of saturation based on time for engineering studies that will be carried out in similar lithologies.
文摘In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).
文摘FeSiAl alloys ribbons synthesized by melt-quench were annealed in vacuum at 873 K for 60 rain. The flaky powders were prepared by milling the annealed ribbons for 70 h. After milling, the powders were heat treated at 573 K for 90 rain. The ordering degree of the powders lattice structure was analyzed by X-ray diffraction (XRD). The measurement of specific saturation magnetization was carried out by vibrating samples magnetometer (VSM). Complex permittivity and complex permeability in the frequency band of 0.5-18 GHz were measured with the vector network analyzer. The ordering degree of the superlattice structure increased from 0.2'7 to 0.49. Complex permittivity and complex permeability decreased with increasing Si content. After ordering, the specific saturation magnetization decreased from 134.2 to 85.0 A.m2.kg-1. For use in anti-EMI material, the total contents of Si and Al in FeSiAl alloys should be controlled at a low level.
文摘Growth of phytoplankton, zooplankton and probably most other marine organisms as well, is likely to be affected by the pH of seawater. Growth of calcareous shells and skeletons is less likely to be affect ed by the saturation states of calcite and aragonite but the dissolution is. The increase of CO2 in the oceans due to burning of fossil fuel and clearing of forests is decreasing the pH of seawater and the degress of saturation for calcite and aragonite worldwide. This paper presents the results of the first attempt to estimate the vertical distribution of anthropogenic CO2, and the decreases in pH and the degrees of saturation of calcite and aragonite in seawater near Taiwan. Most ef fects are very small except for the possible dissolution of aragonite on the upper continental slope starting around 2050 AD.
基金This work is supported by the Doctor Foundation (No:02.T20102-06) and the Post Doctor Foundation of Ningbo University.
文摘The 'o' saturation theorem and the degree of Lwp, approximation by (0 - q' - q) type Hermite-Fejer interpolating polynomials for mean convergence are obtained.
文摘This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.