期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Plasma treated M1 MoVNbTeO_(x)-CeO_(2) composite catalyst for improved performance of oxidative dehydrogenation of ethane
1
作者 Shuairen Qian Yuxin Chen +1 位作者 Binhang Yan Yi Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期904-914,共11页
High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was... High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium. 展开更多
关键词 Oxidative dehydrogenation of ethane(ODHE) MoVNbTeO_(x) Composite catalyst Oxygen plasma Energy conversion
下载PDF
Enhanced stability of Pt/Al_(2)O_(3) modified by Zn promoter for catalytic dehydrogenation of ethane 被引量:2
2
作者 Xiaoyu Li Yanliang Zhou +6 位作者 Botao Qiao Xiaoli Pan Chaojie Wang Liru Cao Lin Li Jian Lin Xiaodong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期14-20,共7页
Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts... Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts used in this reaction often suffer from rapid deactivation due to serious coke deposition and metal sintering. Herein, we reported the effects of Zn modification on the stability of Pt/Al2 O3 for EDH.The Zn-modified sample(PtZn2/Al2 O3) exhibits stable ethane conversion(20%) with over 95% ethylene selectivity. More importantly, it exhibits a significantly low deactivation rate of only 0.003 h-1 at 600 °C for70 h, which surpasses most of previously reported catalysts. Detailed characterizations including in situ FT-IR, ethylene adsorption microcalorimetry, and HAADF-STEM etc. reveal that Zn modifier reduces the number of Lewis acid sites on the catalyst surface. Moreover, it could modify Pt sites and preferentially cover the step sites, which decrease surface energy and retard the sintering of Pt particle, then prohibiting the further dehydrogenation of ethylene to ethylidyne. Consequently, the good stability is realized due to anti-sintering and the decrease of coke formation on the Pt Zn2/Al2 O3 catalyst. 展开更多
关键词 Catalytic dehydrogenation of ethane STABILITY PtZn/Al2O3 Zn promoter COKE
下载PDF
Investigation on High Efficient Catalysts for the Oxidative Dehydrogenation of Ethane
3
作者 K.R.Tsai 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1993年第3期269-272,共4页
Since the pioneer work of Thorsteinson fot me ox(?) ethane, a series of V-Mo based catalysts mainly for the oxidative dehydrogenation of ethane have been patented. On the surfaces of these catalysts, a C;H;selectivi... Since the pioneer work of Thorsteinson fot me ox(?) ethane, a series of V-Mo based catalysts mainly for the oxidative dehydrogenation of ethane have been patented. On the surfaces of these catalysts, a C;H;selectivity of 70% was achieved, but the space velocity was only about 340 h;. Lunsford, et al. reported a C;H;conversion of 75% and a C;H;selectivity of 76% over the 展开更多
关键词 Oxidative dehydrogenation of ethane Oxygen species XPS RAMAN TPD
下载PDF
Simultaneous generation of electricity, ethylene and decomposition of nitrous oxide via protonic ceramic fuel cell membrane reactor
4
作者 Song Lei Ao Wang +3 位作者 Guowei Weng Ying Wu Jian Xue Haihui Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期359-368,I0010,共11页
Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of... Ethylene,one of the most widely produced building blocks in the petrochemical industry,has received intense attention.Ethylene production,using electrochemical hydrogen pump-facilitated nonoxidative dehydrogenation of ethane(NDE)to ethylene,is an emerging and promising route,promoting the transformation of the ethylene industry from energy-intensive steam cracking process to new electrochemical membrane reactor technology.In this work,the NDE reaction is incorporated into a BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)electrolyte-supported protonic ceramic fuel cell membrane reactor to co-generate electricity and ethylene,utilizing the Nb and Cu doped perovskite oxide Pr_(0.6)Sr_(0.4)Fe_(0.8)Nb_(0.1)Cu_(0.1)O_(3-δ)(PSFNCu)as anode catalytic layer.Due to the doping of Nb and Cu,PSFNCu was endowed with high reduction tolerance and rich oxygen vacancies,showing excellent NDE catalytic performance.The maximum power density of the assembled reactor reaches 200 mW cm^(-2)at 750℃,with high ethane conversion(44.9%)and ethylene selectivity(92.7%).Moreover,the nitrous oxide decomposition was first coupled in the protonic ceramic fuel cell membrane reactor to consume the permeated protons.As a result,the generation of electricity,ethylene and decomposition of nitrous oxide can be simultaneously obtained by a single reactor.Specifically,the maximum power density of the cell reaches 208 mW cm^(-2)at 750℃,with high ethane conversion(45.2%),ethylene selectivity(92.5%),and nitrous oxide conversion(19,0%).This multi-win technology is promising for not only the production of chemicals and energy but also greenhouse gas reduction. 展开更多
关键词 Nonoxidative dehydrogenation of ethane ETHYLENE Nitrous oxide decomposition Protonic ceramic fuel cell membrane reactor Perovskite oxide
下载PDF
Electrifying Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ) for focalized heating in oxygen transport membranes
5
作者 Marwan Laqdiem Julio García-Fayos +6 位作者 Laura Almar Alfonso J.Carrillo Álvaro Represa JoséM.López Nieto Sonia Escolástico David Catalán-Martinez Jose M.Serra 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期99-110,共12页
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production... Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned. 展开更多
关键词 Oxygen permeation Oxidative dehydrogenation of ethane Oxygen transport membranes Joule effect Mixed ionic-electronic conductors Catalytic membrane reactors
下载PDF
Supported ZnO catalysts for the conversion of alkanes:About the metamorphosis of a heterogeneous catalyst 被引量:6
6
作者 S.Arndt B.Uysal +4 位作者 A.Berthold T.Otrebma Y.Aksu M.Driess R.Schomcker 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期581-594,共14页
ZnO could be a suitable catalyst for the oxidative conversion of CH4,C2H6 and C3H8.However,the main drawback is its thermal instability.Therefore,ZnO supported on ZrO 2,TiO2,γ-Al2O and SiO2 was investigated for the o... ZnO could be a suitable catalyst for the oxidative conversion of CH4,C2H6 and C3H8.However,the main drawback is its thermal instability.Therefore,ZnO supported on ZrO 2,TiO2,γ-Al2O and SiO2 was investigated for the oxidative dehydrogenation of propane and ethane,and the oxidative coupling of methane.The stability of the supported ZnO is partially improved,but ZnO reacts with the support material,forming new compounds (Zn-zirconates,-titanates,-aluminates and-silicates),which already occurs below reaction temperature.This might also be the case for many other heterogeneous catalysts. 展开更多
关键词 oxidative dehydrogenation oxidative coupling of methane oxidative dehydrogenation of ethane oxidative dehydrogenation of propane ZNO
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部