Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly consi...Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.展开更多
Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large partic...Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large particle size(>20 nm)and less surface defects,however,hinder further application of ceria materials.Herein,an alternative strategy involving lactic acid(LA)assisted hydrothermal method was developed to synthesize active,selective and durable cubic ceria of<6 nm for dehydrogenation reactions.Detailed studies of growth mechanism revealed that,the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors.Carboxyl groups determine the cubic shape and particle size,while hydroxyl groups promote compositional transformation of ceria precursors into CeO_(2) phases.Moreover,enhanced oxygen vacancies(Vo)on the surface of CeO_(2) were obtained owing to continuous removal of O species under reductive atmosphere.Cubic CeO_(2) catalysts synthesized by the LA-assisted method,immobilized with bimetallic PtCo clusters,exhibit a record high activity(TOF:29,241 h^(-1))and Vo-dependent synergism for dehydrogenation of bio-derived polyols at 200℃.We also found that quenching Vo defects at air atmosphere causes activity loss of PtCo/CeO_(2) catalysts.To regenerate Vo defects,a simple strategy was developed by irradiating deactivated catalysts using hernia lamp.The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications.展开更多
Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcycl...Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.展开更多
Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers....Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).展开更多
Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe pro...Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe problem of metal sintering under high-temperature conditions.Herein,we develop an efficient K_(2)CO_(3)-modified Pt/TiO_(2)—Al_(2)O_(3)(K—Pt/TA)for cycloalkane dehydrogenation.The optimized K—Pt/TA showed a high specific activity above 27.9 mol·mol^(-1)·s^(-1)(H_(2)/Pt),with toluene selectivity above 90.0%at 600℃with a high weight hourly space velocity of 266.4 h^(-1).The introduction of alkali metal ions could generate titanate layers after high-temperature hydrogen reduction treatment,which promotes the generation of oxygen vacancy defects to anchored Pt clusters.In addition,the titanate layers could weaken the surface acidity of catalysts and inhibit side reactions,including pyrolysis,polymerization,and isomerization reactions.Thus,this work provides a modification method to develop efficient and stable dehydrogenation catalysts under high-temperature conditions.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).展开更多
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the...Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.展开更多
Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane c...Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.展开更多
The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape,...The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.展开更多
The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO tech...The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.展开更多
The oxidative dehydrogenation (ODH) reactions of ethane and propane were investigated in a catalytic membrane reactor, incorporating oxygen-permeable membranes based upon La2Ni0.9V0.1O4+δor Ba0.5Sr0.5Co0.8Fe0.2O3-...The oxidative dehydrogenation (ODH) reactions of ethane and propane were investigated in a catalytic membrane reactor, incorporating oxygen-permeable membranes based upon La2Ni0.9V0.1O4+δor Ba0.5Sr0.5Co0.8Fe0.2O3-δ. As a compromise between the occurrence of a measureable oxygen flux and excessive homogenous gas phase reactions, the measurements were conducted at an intermediate temperature, either at 550 or 650 oC. The results show the dominating role of the oxygen flux across the membrane and available sites at the membrane surface in primary activation of the alkane and, hence, in achieving high alkane conversions. The experimental data of ODH of propane and ethane on both membrane materials can be reconciled on the basis of Mars-van Krevelen mechanism, in which the alkane reacts with lattice oxygen on the membrane surface to produce the corresponding olefin. It is further demonstrated that the oxygen concentration in the gas phase and on the membrane surface is crucial for determining the olefin selectivity.展开更多
A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during t...A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process.展开更多
Mg2FeH6 doped with and without Ti and its alloys (TiMn2, TiAl) were prepared combing ball milling and heat treatment. The effects of these additives on the dehydrogenation performance of Mg2FeH6 were studied systemati...Mg2FeH6 doped with and without Ti and its alloys (TiMn2, TiAl) were prepared combing ball milling and heat treatment. The effects of these additives on the dehydrogenation performance of Mg2FeH6 were studied systematically. The results show that all additives have favor influence on improving the hydrogen desorption property of Mg2FeH6. Especially, TiMn2 exhibits prominent effect on enhancing the dehydrogenation kinetics of Mg2FeH6. Moreover, the activation energy of TiMn2-doped Mg2FeH6 calculated by Kissinger equation is 94.87 kJ/mol, which is 28 kJ/mol lower than that of the undoped Mg2FeH6. The cycling tests suggest that the improved dehydrogenation kinetics of Mg2FeH6 doped by TiMn2 can maintain in the second cycle.展开更多
The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with eth...The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.展开更多
Catalytic dehydrogenation of isobutane has recently received considerable attention because of the increasing demand for isobutene.In this study,the synergistic effect between Sn and K on PtSnK/γ-Al2O3 catalysts has ...Catalytic dehydrogenation of isobutane has recently received considerable attention because of the increasing demand for isobutene.In this study,the synergistic effect between Sn and K on PtSnK/γ-Al2O3 catalysts has been investigated by changing the content of Sn.It was found that with the presence of potassium,suitable addition of Sn could not only increase the metal dispersion,but also reduce the catalyst acidity.In these cases,the synergistic effect could also strengthen the interactions between the metal and support,which resulted in an increase in both catalytic activity and stability.In our experiments,Pt-0.6SnK/Al catalyst exhibited the lowest deactivation rate (12.4%) and showed a selectivity to isobutene higher than 94% at the isobutane conversion of about 45.3% after running the reaction for 6 h.However,with the excessive loading of Sn,surface property of active sites and the interactions between metal and support were changed.As a result,the initial optimal ratio between the metallic function and acid function would be destroyed,which was disadvantageous to the reaction.展开更多
Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TP...Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.展开更多
The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15, such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15), for propane dehydrogenat...The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15, such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15), for propane dehydrogenation were investigated. Al2O3/SBA-15 was prepared either by an impregnation method using aluminum nitrate aqueous solution, or by the treatment of SBA-15 with a Al(OC3H7)3 solution in anhydrous toluene. N2-physisorption, FT-IR spectroscopy, solid-state 27Al MAS NMR spectroscopy, hydrogen chemisorption, XRF, NH3 temperature-programmed desorption, X-ray photoelectron spectroscopy and TPO were used to characterize these samples. Among these catalysts, the PtSn-based catalyst supported on Al2O3/SBA-15, which was grafted with Al(OC3H7)3, exhibited the best catalytic performance in terms of activity and stability The possible reason was due to the high Pt metal dispersion and/or the strong interactions among Pt, Sn, and the support.展开更多
The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM,...The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM, XPS, NH3-TPD, H2 chemisorption, TPR and TPO techniques. It has been found that with suitable amount of cerium addition, the platinum dispersion increased, while the carbon deposition tended to be eliminated easily. In these cases, the presence of cerium could not only realize the better distribution of metallic particles on the support, but also strengthen the interactions between Sn species and the support. Additionally, XPS spectra confirmed that more amounts of tin could exist in oxidized form, which was advantageous to the reaction. In our experiments, PtSnNaCe (1.1 wt%)/ZSM-5 catalyst exhibited the best catalytic performance. After running the reaction for 750 h, propane conversion was maintained higher than 30% with the corresponding selectivity to propylene of about 97%.展开更多
VOx/SiO2 catalysts prepared by impregnation method were used for catalytic dehydrogenation of n-butane to butenes and characterized by X-ray diffraction, FT-IR, UV-vis, Raman, and BET measurements. The effects of VOx ...VOx/SiO2 catalysts prepared by impregnation method were used for catalytic dehydrogenation of n-butane to butenes and characterized by X-ray diffraction, FT-IR, UV-vis, Raman, and BET measurements. The effects of VOx loading and the reaction temperature on the VOx/SiO2 catalysts and their catalytic performances for the dehydrogenation of n-butane were studied. When the VOx loading was 12% g/gcat and reaction temperature was between 590 ℃ and 600℃, n-butane conversion and butenes yields reached the highest value under H2 flux of 10 ml/min and n-butane flux of 10 ml/min. Product distribution, such as the ratio of 2-butene to 1-butene and the ratio of cis-2-butene to trans-2-butene, was mainly influenced by the reaction temperature.展开更多
基金the financial support from the National Natural Science Foundation of China (22035009,22178381)the National Key R&D Program of China (2021YFA1501301,2021YFC2901100)。
文摘Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.
基金financial supports National Natural Science Foundation of China(22078365,21706290)Natural Science Foundation of Shandong Province(ZR2017MB004)+2 种基金Innovative Research Funding from Qingdao City,Shandong Province(17-1-1-80-jch)“Fundamental Research Funds for the Central Universities”and“the Development Fund of State Key Laboratory of Heavy Oil Processing”(17CX02017A,20CX02204A)Postgraduate Innovation Project(YCX2021057)from China University of Petroleum.
文摘Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large particle size(>20 nm)and less surface defects,however,hinder further application of ceria materials.Herein,an alternative strategy involving lactic acid(LA)assisted hydrothermal method was developed to synthesize active,selective and durable cubic ceria of<6 nm for dehydrogenation reactions.Detailed studies of growth mechanism revealed that,the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors.Carboxyl groups determine the cubic shape and particle size,while hydroxyl groups promote compositional transformation of ceria precursors into CeO_(2) phases.Moreover,enhanced oxygen vacancies(Vo)on the surface of CeO_(2) were obtained owing to continuous removal of O species under reductive atmosphere.Cubic CeO_(2) catalysts synthesized by the LA-assisted method,immobilized with bimetallic PtCo clusters,exhibit a record high activity(TOF:29,241 h^(-1))and Vo-dependent synergism for dehydrogenation of bio-derived polyols at 200℃.We also found that quenching Vo defects at air atmosphere causes activity loss of PtCo/CeO_(2) catalysts.To regenerate Vo defects,a simple strategy was developed by irradiating deactivated catalysts using hernia lamp.The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications.
文摘Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.
基金the SINOPEC Research and Development Project(No.JR22094).
文摘Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).
基金supported by the National Natural Science Foundation of China(22025802)。
文摘Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe problem of metal sintering under high-temperature conditions.Herein,we develop an efficient K_(2)CO_(3)-modified Pt/TiO_(2)—Al_(2)O_(3)(K—Pt/TA)for cycloalkane dehydrogenation.The optimized K—Pt/TA showed a high specific activity above 27.9 mol·mol^(-1)·s^(-1)(H_(2)/Pt),with toluene selectivity above 90.0%at 600℃with a high weight hourly space velocity of 266.4 h^(-1).The introduction of alkali metal ions could generate titanate layers after high-temperature hydrogen reduction treatment,which promotes the generation of oxygen vacancy defects to anchored Pt clusters.In addition,the titanate layers could weaken the surface acidity of catalysts and inhibit side reactions,including pyrolysis,polymerization,and isomerization reactions.Thus,this work provides a modification method to develop efficient and stable dehydrogenation catalysts under high-temperature conditions.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).
基金support of National Natural Science Foundation of China(22179027)gratefully acknowledged.This work was also supported by the Natural Science Foundation of Guangxi Province(2021GXNSFAA075063,2018GXNSFDA281005)+1 种基金the National Key Research and Development Program of China(2017YFE0105500)Science&Technology Research Project of Guangdong Province(2017A020216009).
文摘Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.
基金supported by the National Natural Science Foundation of China (21225312, U1462120, 21473206)Cheung Kong Scholars Programme of China (T2015036)~~
文摘Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.
基金supported by the National Natural Science Foundation of China(21276041)the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province(2015020200)the Fundamental Research Funds for the Central Universities(DUT15LK41)~~
文摘The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins.
基金supported by the Jiangsu Planned Projects for Postdoctoral Research Funds(1301080C)NNSFC(21202141,21173182)+1 种基金Key Science&Technology Specific Projects of Yangzhou(YZ20122029)the Innovation Foundation of Yangzhou University(2015CXJ009)~~
文摘The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.
文摘The oxidative dehydrogenation (ODH) reactions of ethane and propane were investigated in a catalytic membrane reactor, incorporating oxygen-permeable membranes based upon La2Ni0.9V0.1O4+δor Ba0.5Sr0.5Co0.8Fe0.2O3-δ. As a compromise between the occurrence of a measureable oxygen flux and excessive homogenous gas phase reactions, the measurements were conducted at an intermediate temperature, either at 550 or 650 oC. The results show the dominating role of the oxygen flux across the membrane and available sites at the membrane surface in primary activation of the alkane and, hence, in achieving high alkane conversions. The experimental data of ODH of propane and ethane on both membrane materials can be reconciled on the basis of Mars-van Krevelen mechanism, in which the alkane reacts with lattice oxygen on the membrane surface to produce the corresponding olefin. It is further demonstrated that the oxygen concentration in the gas phase and on the membrane surface is crucial for determining the olefin selectivity.
基金The National Science Foundation of China(No.2157604921576050)the Fundamental Research Funds for the Central Universities(No.2242014K10025)
文摘A comprehensive single particle model which includes the mesoscale and microscale models was developed to study the influence of particle diameter on mass and heat transfer occurring within a ferrite catalyst during the oxidative dehydrogenation of butene to butadiene process. The verified model can be used to investigate the influence of catalyst diameter on the flow distribution inside the particle. The simulation results demonstrate that the mass fraction gradients of all species, temperature gradient and pressure gradient increase with the increase of the particle diameter. It means that there is a high intraparticle transfer resistance and strong diffusion when applying the large catalysts. The external particle mass transfer resistance is nearly constant under different particle diameters so that the effect of particle diameter at external diffusion can be ignored. A large particle diameter can lead to a high surface temperature, which indicates the external heat transfer resistance. Moreover, the selectivity of reaction may be changed with a variety of particle diameters so that choosing appropriate particle size can enhance the production of butadiene and optimize the reaction process.
基金Project(2010CB631300)supported by the National Basic Research Program of ChinaProject(2012AA051503)supported by the National High Technology Research&Development Program of China+1 种基金Projects(51001090,51171173)supported by the National Natural Science Foundation of ChinaProject(IRT13037)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘Mg2FeH6 doped with and without Ti and its alloys (TiMn2, TiAl) were prepared combing ball milling and heat treatment. The effects of these additives on the dehydrogenation performance of Mg2FeH6 were studied systematically. The results show that all additives have favor influence on improving the hydrogen desorption property of Mg2FeH6. Especially, TiMn2 exhibits prominent effect on enhancing the dehydrogenation kinetics of Mg2FeH6. Moreover, the activation energy of TiMn2-doped Mg2FeH6 calculated by Kissinger equation is 94.87 kJ/mol, which is 28 kJ/mol lower than that of the undoped Mg2FeH6. The cycling tests suggest that the improved dehydrogenation kinetics of Mg2FeH6 doped by TiMn2 can maintain in the second cycle.
基金the financial support from China Postdoctoral Science Foundation (2014M560224)
文摘The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.
基金supported by the National Natural Science Foundation of China (21106017 and 50873026)Specialized Research Fund for the Doctoral Program of Higher Education of China (20100092120047)Production and Research Prospective Joint Research Project of Jiangsu Province of China (Grant No.BY2009153)
文摘Catalytic dehydrogenation of isobutane has recently received considerable attention because of the increasing demand for isobutene.In this study,the synergistic effect between Sn and K on PtSnK/γ-Al2O3 catalysts has been investigated by changing the content of Sn.It was found that with the presence of potassium,suitable addition of Sn could not only increase the metal dispersion,but also reduce the catalyst acidity.In these cases,the synergistic effect could also strengthen the interactions between the metal and support,which resulted in an increase in both catalytic activity and stability.In our experiments,Pt-0.6SnK/Al catalyst exhibited the lowest deactivation rate (12.4%) and showed a selectivity to isobutene higher than 94% at the isobutane conversion of about 45.3% after running the reaction for 6 h.However,with the excessive loading of Sn,surface property of active sites and the interactions between metal and support were changed.As a result,the initial optimal ratio between the metallic function and acid function would be destroyed,which was disadvantageous to the reaction.
基金supported by the Natural Science Foundation of Shandong Provence of China(ZR2013BM008)
文摘Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.
基金supported by the National Nature Science Foundation of China (50873026, 21106017)the Production and Research Prospective Joint Research Project (BY2009153)+1 种基金the Science and Technology Support Program (BE2008129) of Jiangsu Province of ChinaSpecialized Research Fund for the Doctoral Program of Higher Education of China (20100092120047)
文摘The catalytic properties of PtSn-based catalysts supported on siliceous SBA-15 and Al-modified SBA-15, such as Al-incorporated SBA-15 (AlSBA-15) and alumina-modified SBA-15 (Al2O3/SBA-15), for propane dehydrogenation were investigated. Al2O3/SBA-15 was prepared either by an impregnation method using aluminum nitrate aqueous solution, or by the treatment of SBA-15 with a Al(OC3H7)3 solution in anhydrous toluene. N2-physisorption, FT-IR spectroscopy, solid-state 27Al MAS NMR spectroscopy, hydrogen chemisorption, XRF, NH3 temperature-programmed desorption, X-ray photoelectron spectroscopy and TPO were used to characterize these samples. Among these catalysts, the PtSn-based catalyst supported on Al2O3/SBA-15, which was grafted with Al(OC3H7)3, exhibited the best catalytic performance in terms of activity and stability The possible reason was due to the high Pt metal dispersion and/or the strong interactions among Pt, Sn, and the support.
基金supported by the National Natural Science Foundation of China (Grant No. 50873026 and 21106017)the Production and Research Prospective Joint Research Project of Jiangsu Province of China (Grant No. BY2009153)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100092120047)
文摘The effect of cerium addition on the catalytic performance of propane dehydrogenation over PtSnNaIZSM-5 catalyst has been investigated by reaction tests and some physicochemical characterization such as XRD, BET, TEM, XPS, NH3-TPD, H2 chemisorption, TPR and TPO techniques. It has been found that with suitable amount of cerium addition, the platinum dispersion increased, while the carbon deposition tended to be eliminated easily. In these cases, the presence of cerium could not only realize the better distribution of metallic particles on the support, but also strengthen the interactions between Sn species and the support. Additionally, XPS spectra confirmed that more amounts of tin could exist in oxidized form, which was advantageous to the reaction. In our experiments, PtSnNaCe (1.1 wt%)/ZSM-5 catalyst exhibited the best catalytic performance. After running the reaction for 750 h, propane conversion was maintained higher than 30% with the corresponding selectivity to propylene of about 97%.
基金The project was supported by Program for New Century Excellent Talents in University (Grant No. NCET-04-0987)Doctor Fund of Science Research of Xinjiang University (Grant No. BS060101).
文摘VOx/SiO2 catalysts prepared by impregnation method were used for catalytic dehydrogenation of n-butane to butenes and characterized by X-ray diffraction, FT-IR, UV-vis, Raman, and BET measurements. The effects of VOx loading and the reaction temperature on the VOx/SiO2 catalysts and their catalytic performances for the dehydrogenation of n-butane were studied. When the VOx loading was 12% g/gcat and reaction temperature was between 590 ℃ and 600℃, n-butane conversion and butenes yields reached the highest value under H2 flux of 10 ml/min and n-butane flux of 10 ml/min. Product distribution, such as the ratio of 2-butene to 1-butene and the ratio of cis-2-butene to trans-2-butene, was mainly influenced by the reaction temperature.