On-purpose propane dehydrogenation(PDH) has emerged as a profitable alternative to the traditional cracking of oil products for propylene production. By means of density functional theory(DFT) calculations, the presen...On-purpose propane dehydrogenation(PDH) has emerged as a profitable alternative to the traditional cracking of oil products for propylene production. By means of density functional theory(DFT) calculations, the present work demonstrates that Fe atoms may atomically disperse on MoS_(2)(Fe_(1)/MoS_(2)) and serve as a promising single-atom catalyst(SAC) for PDH. The catalytic activity of Fe_(1)/MoS_(2)is attributed to the highly exposed d orbitals of single Fe atoms, while the propylene selectivity is originated from the kinetic inhibition of propylene dehydrogenation resulting from fast propenyl hydrogenation. The unique catalytic selectivity of Fe_(1)/MoS_(2)may inspire further investigations of on-purpose dehydrogenations of propane on SACs.展开更多
Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen...Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials.展开更多
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc...Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.展开更多
Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly consi...Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.展开更多
Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe pro...Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe problem of metal sintering under high-temperature conditions.Herein,we develop an efficient K_(2)CO_(3)-modified Pt/TiO_(2)—Al_(2)O_(3)(K—Pt/TA)for cycloalkane dehydrogenation.The optimized K—Pt/TA showed a high specific activity above 27.9 mol·mol^(-1)·s^(-1)(H_(2)/Pt),with toluene selectivity above 90.0%at 600℃with a high weight hourly space velocity of 266.4 h^(-1).The introduction of alkali metal ions could generate titanate layers after high-temperature hydrogen reduction treatment,which promotes the generation of oxygen vacancy defects to anchored Pt clusters.In addition,the titanate layers could weaken the surface acidity of catalysts and inhibit side reactions,including pyrolysis,polymerization,and isomerization reactions.Thus,this work provides a modification method to develop efficient and stable dehydrogenation catalysts under high-temperature conditions.展开更多
Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large partic...Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large particle size(>20 nm)and less surface defects,however,hinder further application of ceria materials.Herein,an alternative strategy involving lactic acid(LA)assisted hydrothermal method was developed to synthesize active,selective and durable cubic ceria of<6 nm for dehydrogenation reactions.Detailed studies of growth mechanism revealed that,the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors.Carboxyl groups determine the cubic shape and particle size,while hydroxyl groups promote compositional transformation of ceria precursors into CeO_(2) phases.Moreover,enhanced oxygen vacancies(Vo)on the surface of CeO_(2) were obtained owing to continuous removal of O species under reductive atmosphere.Cubic CeO_(2) catalysts synthesized by the LA-assisted method,immobilized with bimetallic PtCo clusters,exhibit a record high activity(TOF:29,241 h^(-1))and Vo-dependent synergism for dehydrogenation of bio-derived polyols at 200℃.We also found that quenching Vo defects at air atmosphere causes activity loss of PtCo/CeO_(2) catalysts.To regenerate Vo defects,a simple strategy was developed by irradiating deactivated catalysts using hernia lamp.The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers....Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcycl...Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.展开更多
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulati...The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.展开更多
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the...Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).展开更多
Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified ...Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+) species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+) species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+) species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+) species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+) species corresponding to GaHHW.展开更多
Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of h...Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of heterogeneous catalysts have found applications in industry for the dehydrogenation of light alkanes, mainly ethane, propane, and butane. In the past three decades, a number of transition-metal complexes,particularly pincer-ligated iridium complexes, have been developed as the homogeneous catalysts for alkane dehydrogenations. The homogeneous catalyst systems operate under much milder conditions compared with the heterogeneous systems, and some systems exhibit good activity and high regioselectivity in dehydrogenation of alkanes longer than butane.展开更多
Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode...Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts,which are still challenging due to the totally different catalytic mechanisms.Herein,the[W–O]group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst,which possesses excellent catalytic performances towards both HER(185.60 mV at 1000 mA cm^(−2))and HzOR(78.99 mV at 10,00 mA cm^(−2))with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm^(−2).The introduction of[W–O]groups,working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation,leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in[W–O]group as well,resultantly boosting the hydrogen production and HzOR.Moreover,a proof-of-concept direct hydrazine fuel cell-powered H_(2) production system has been assembled,realizing H_(2)evolution at a rate of 3.53 mmol cm^(−2)h^(−1)at room temperature without external electricity supply.展开更多
Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-pu...Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance.展开更多
Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present...Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present for the first time that anomalous metastable hexagonal close-packed Ni nanoparticles induced by heteroatom N doping encapsulated in carbon(N-hcp-Ni/C) can exhibit admirable catalytic performance for ammonia borane(AB) dehydrogenation, prominently outperforming conventional fcc Ni counterpart with similar morphology and favorably presenting the state-of-the-art level.Comprehensive experimental and theoretical studies unravel that unusual hcp phase engineering of Ni together with N doping could induce charge redistribution and modulate electronic structure, thereby facilitating H_(2)O adsorption and expediting H_(2)O dissociation(rate-determining step). As a result, AB dehydrogenation can be substantially boosted with the assistance of N-hcp-Ni/C. Our proposed strategy highlights that unconventional crystal phase engineering coupled with non-metal heteroatom doping is a promising avenue to construct advanced transition metal catalysts for future renewable energy technologies.展开更多
基金Natural Science Foundation of China (Nos. 21771134, 22173067)National Key R&D Program of China (Nos. 2017YFA0204800)+4 种基金Science and Technology Project of Jiangsu Province (No. BZ2020011)the Science and Technology Development Fund, Macao SAR (FDCT, No. 0052/2021/A)Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 Projectsupport from Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_2658)。
文摘On-purpose propane dehydrogenation(PDH) has emerged as a profitable alternative to the traditional cracking of oil products for propylene production. By means of density functional theory(DFT) calculations, the present work demonstrates that Fe atoms may atomically disperse on MoS_(2)(Fe_(1)/MoS_(2)) and serve as a promising single-atom catalyst(SAC) for PDH. The catalytic activity of Fe_(1)/MoS_(2)is attributed to the highly exposed d orbitals of single Fe atoms, while the propylene selectivity is originated from the kinetic inhibition of propylene dehydrogenation resulting from fast propenyl hydrogenation. The unique catalytic selectivity of Fe_(1)/MoS_(2)may inspire further investigations of on-purpose dehydrogenations of propane on SACs.
基金supported by National Key Research and Development Program of China(2021YFB4000604)National Natural Science Foundation of China(52271220)111 Project(B12015)and the Fundamental Research Funds for the Central Universities.
文摘Hydrogen energy has emerged as a pivotal solution to address the global energy crisis and pave the way for a cleaner,low-carbon,secure,and efficient modern energy system.A key imperative in the utilization of hydrogen energy lies in the development of high-performance hydrogen storage materials.Magnesium-based hydrogen storage materials exhibit remarkable advantages,including high hydrogen storage density,cost-effectiveness,and abundant magnesium resources,making them highly promising for the hydrogen energy sector.Nonetheless,practical applications of magnesium hydride for hydrogen storage face significant challenges,primarily due to their slow kinetics and stable thermodynamic properties.Herein,we briefly summarize the thermodynamic and kinetic properties of MgH2,encompassing strategies such as alloying,nanoscaling,catalyst doping,and composite system construction to enhance its hydrogen storage performance.Notably,nanoscaling and catalyst doping have emerged as more effective modification strategies.The discussion focuses on the thermodynamic changes induced by nanoscaling and the kinetic enhancements resulting from catalyst doping.Particular emphasis lies in the synergistic improvement strategy of incorporating nanocatalysts with confinement materials,and we revisit typical works on the multi-strategy optimization of MgH2.In conclusion,we conduct an analysis of outstanding challenges and issues,followed by presenting future research and development prospects for MgH2 as hydrogen storage materials.
基金supported by Natural Science Foundation of Henan Province of China(162300410253)the Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shen-ma Group(41040220181107-8).
文摘Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.
基金the financial support from the National Natural Science Foundation of China (22035009,22178381)the National Key R&D Program of China (2021YFA1501301,2021YFC2901100)。
文摘Light alkanes non-oxidative dehydrogenation is an attractive non-oil route for olefins production.The alkane dehydrogenation reaction is limited by thermodynamic equilibrium,and the C-H bond cleavage is commonly considered as the rate-determined step.The valence state of metal sites in catalysts will influence the stabilization of the vital intermediate(i.e.,C_(x)H_(y)...M^(δ+)...H)during the C-H bond cleavage process,which in turn affects the catalytic reactivity.Herein,we explicitly investigated the effect of different valence states of framework-Fe in silicate-1 zeolite on ethane dehydrogenation reaction through the combination of experimental and theoretical study.Fe(Ⅱ)-S-1 and Fe(Ⅲ)-S-1 catalysts are successfully synthesized by ligand-assisted in situ crystallization method,In-situ C_(2)H_6-FTIR shows the higher coverage of hydrocarbon intermediates on Fe(Ⅱ)-S-1,Under the same evaluation co nditio n,Fe(Ⅱ)-S-1 exhibits a higher space time yield of ethylene.Density functional theory(DFT)results reveal that the more coordinate-unsaturated and electron-enriched Fe(Ⅱ)sites boost the first C-H bond activation by slight deformation and efficient electron donation with C_(2)H_(5)^(*)species.Remarkably,the second C-H bond cleavage on Fe(Ⅱ)-S-1 undergoes a spin-crossing process from quintet state to triplet state,which involves a two-electro n-two-orbital interaction,further promoting the formation of ethylene.Microkinetic analysis is consistent with the experimental and DFT results.This work could provide methodology for elucidating the effect of metal valence states on catalytic performance as well as offer guidance for designing more efficient Fe-zeolite catalysts.
基金supported by the National Natural Science Foundation of China(22025802)。
文摘Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe problem of metal sintering under high-temperature conditions.Herein,we develop an efficient K_(2)CO_(3)-modified Pt/TiO_(2)—Al_(2)O_(3)(K—Pt/TA)for cycloalkane dehydrogenation.The optimized K—Pt/TA showed a high specific activity above 27.9 mol·mol^(-1)·s^(-1)(H_(2)/Pt),with toluene selectivity above 90.0%at 600℃with a high weight hourly space velocity of 266.4 h^(-1).The introduction of alkali metal ions could generate titanate layers after high-temperature hydrogen reduction treatment,which promotes the generation of oxygen vacancy defects to anchored Pt clusters.In addition,the titanate layers could weaken the surface acidity of catalysts and inhibit side reactions,including pyrolysis,polymerization,and isomerization reactions.Thus,this work provides a modification method to develop efficient and stable dehydrogenation catalysts under high-temperature conditions.
基金financial supports National Natural Science Foundation of China(22078365,21706290)Natural Science Foundation of Shandong Province(ZR2017MB004)+2 种基金Innovative Research Funding from Qingdao City,Shandong Province(17-1-1-80-jch)“Fundamental Research Funds for the Central Universities”and“the Development Fund of State Key Laboratory of Heavy Oil Processing”(17CX02017A,20CX02204A)Postgraduate Innovation Project(YCX2021057)from China University of Petroleum.
文摘Dehydrogenation is considered as one of the most important industrial applications for renewable energy.Cubic ceria-based catalysts are known to display promising dehydrogenation performances in this area.Large particle size(>20 nm)and less surface defects,however,hinder further application of ceria materials.Herein,an alternative strategy involving lactic acid(LA)assisted hydrothermal method was developed to synthesize active,selective and durable cubic ceria of<6 nm for dehydrogenation reactions.Detailed studies of growth mechanism revealed that,the carboxyl and hydroxyl groups in LA molecule synergistically manipulate the morphological evolution of ceria precursors.Carboxyl groups determine the cubic shape and particle size,while hydroxyl groups promote compositional transformation of ceria precursors into CeO_(2) phases.Moreover,enhanced oxygen vacancies(Vo)on the surface of CeO_(2) were obtained owing to continuous removal of O species under reductive atmosphere.Cubic CeO_(2) catalysts synthesized by the LA-assisted method,immobilized with bimetallic PtCo clusters,exhibit a record high activity(TOF:29,241 h^(-1))and Vo-dependent synergism for dehydrogenation of bio-derived polyols at 200℃.We also found that quenching Vo defects at air atmosphere causes activity loss of PtCo/CeO_(2) catalysts.To regenerate Vo defects,a simple strategy was developed by irradiating deactivated catalysts using hernia lamp.The outcome of this work will provide new insights into manufacturing durable catalyst materials for aqueous phase dehydrogenation applications.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
基金the SINOPEC Research and Development Project(No.JR22094).
文摘Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
文摘Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.
文摘The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments.
基金support of National Natural Science Foundation of China(22179027)gratefully acknowledged.This work was also supported by the Natural Science Foundation of Guangxi Province(2021GXNSFAA075063,2018GXNSFDA281005)+1 种基金the National Key Research and Development Program of China(2017YFE0105500)Science&Technology Research Project of Guangdong Province(2017A020216009).
文摘Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).
文摘Propane dehydrogenation(PDH)on Ga/H-ZSM-5 catalysts is a promising reaction for propylene production,while the detail mechanism remains debatable.Ga_(2)O_(2)^(2+) stabilized by framework Al pairs have been identified as the most active species in Ga/H-ZSM-5 for PDH in our recent work.Here we demonstrate a strong correlation between the PDH activity and a fraction of Ga_(2)O_(2)^(2+) species corresponding to the infrared GaH band of higher wavenumber(GaHHW)in reduced Ga/H-ZSM-5,instead of the overall Ga_(2)O_(2)^(2+) species,by employing five H-ZSM-5 supports sourced differently with comparable Si/Al ratio.This disparity in Ga_(2)O_(2)^(2+) species stems from their differing capacity in completing the catalytic cycle.Spectroscopic results suggest that PDH proceeds via a two-step mechanism:(1)C-H bond activation of propane on H-Ga_(2)O_(2)^(2+) species(rate determining step);(2)β-hydride elimination of adsorbed propyl group,which only occurs on active Ga_(2)O_(2)^(2+) species corresponding to GaHHW.
基金supported by the National Basic Research Program of China(2015CB856600)the National Natural Science Foundation of China(21422209,21432011,21421091)
文摘Olefins find widespread applications in the synthesis of polyolefins and fine chemicals. With an increasing demand for olefins, the technologies for alkane dehydrogenation have drawn much attention. Several types of heterogeneous catalysts have found applications in industry for the dehydrogenation of light alkanes, mainly ethane, propane, and butane. In the past three decades, a number of transition-metal complexes,particularly pincer-ligated iridium complexes, have been developed as the homogeneous catalysts for alkane dehydrogenations. The homogeneous catalyst systems operate under much milder conditions compared with the heterogeneous systems, and some systems exhibit good activity and high regioselectivity in dehydrogenation of alkanes longer than butane.
基金support of this research by National Natural Science Foundation of China(52172110)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(ZDBS-LY-SLH029)+1 种基金the“Scientific and Technical Innovation Action Plan”Hong Kong,Macao and Taiwan Science&Technology Cooperation Project of Shanghai Science and Technology Committee(21520760500)BL14W1 beamline of Shanghai Synchrotron Radiation Facility(SSRF).
文摘Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts,which are still challenging due to the totally different catalytic mechanisms.Herein,the[W–O]group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst,which possesses excellent catalytic performances towards both HER(185.60 mV at 1000 mA cm^(−2))and HzOR(78.99 mV at 10,00 mA cm^(−2))with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm^(−2).The introduction of[W–O]groups,working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation,leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in[W–O]group as well,resultantly boosting the hydrogen production and HzOR.Moreover,a proof-of-concept direct hydrazine fuel cell-powered H_(2) production system has been assembled,realizing H_(2)evolution at a rate of 3.53 mmol cm^(−2)h^(−1)at room temperature without external electricity supply.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.21802167,21961132026,92034302,21878331,91645108)the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210903).
文摘Propylene is a significant basic material for petrochemicals such as polypropylene,propylene oxide,etc.With abundant propane supply from shale gas,propane dehydrogenation(PDH)becomes extensively attractive as an on-purpose propylene production route in recent years.Nitrogen-doped carbon(NC)nanopolyhedra supported cobalt catalysts were synthesized in one-step of ZIF-67 pyrolysis and investigated further in PDH.XPS,TEM and N_(2) adsorption-desorption were used to study the influence of carbonization temperature on as-prepared NC supported cobalt catalysts.The temperature is found to affect the cobalt phase and nitrogen species of the catalysts.And the positive correlation was established between Co0 proportion and space time yield of propylene,indicating that the modulation of carbonization temperature could be important for catalytic performance.
基金supported by the National Natural Science Foundation of China (52002412 and 22072186)the Natural Science Foundation of Guangdong Province (2021A1515010575)the Guangzhou Science and Technology Plan General Project (202102020862)。
文摘Developing high-performing non-noble transition metal catalysts for H_(2) evolution from chemical hydrogen storage materials is of great significance for the hydrogen economy system, yet challenging. Herein,we present for the first time that anomalous metastable hexagonal close-packed Ni nanoparticles induced by heteroatom N doping encapsulated in carbon(N-hcp-Ni/C) can exhibit admirable catalytic performance for ammonia borane(AB) dehydrogenation, prominently outperforming conventional fcc Ni counterpart with similar morphology and favorably presenting the state-of-the-art level.Comprehensive experimental and theoretical studies unravel that unusual hcp phase engineering of Ni together with N doping could induce charge redistribution and modulate electronic structure, thereby facilitating H_(2)O adsorption and expediting H_(2)O dissociation(rate-determining step). As a result, AB dehydrogenation can be substantially boosted with the assistance of N-hcp-Ni/C. Our proposed strategy highlights that unconventional crystal phase engineering coupled with non-metal heteroatom doping is a promising avenue to construct advanced transition metal catalysts for future renewable energy technologies.