In a thin film-substrate system in-plane compressive stress is commonly generated in the film due to thermal mismatch in operation or fabrication process. If the stress exceeds a critical value, part of the film may b...In a thin film-substrate system in-plane compressive stress is commonly generated in the film due to thermal mismatch in operation or fabrication process. If the stress exceeds a critical value, part of the film may buckle out of plane along the defective interface. After buckling delamination, the interface crack at the ends may propagate. In the whole process, the compliance of the substrate compared with the film plays an important role. In this work, we study a circular film subject to compressive stress on an infinitely thick substrate. We study the effects of compliance of the substrate by modeling the system as a plate on an elastic foundation. The critical buckling condition is formulated. The asymptotic solutions of post-buckling deformation and the corresponding energy release rate of the interface crack are obtained with perturbation methods. The results show that the more compliant the substrate is, the easier for the film to buckle and easier for the interface crack to propagate after buckling.展开更多
基金supported by the National Basic Research Program of China(2013CB035701)the National Natural Science Foundation of China(11321062)
文摘In a thin film-substrate system in-plane compressive stress is commonly generated in the film due to thermal mismatch in operation or fabrication process. If the stress exceeds a critical value, part of the film may buckle out of plane along the defective interface. After buckling delamination, the interface crack at the ends may propagate. In the whole process, the compliance of the substrate compared with the film plays an important role. In this work, we study a circular film subject to compressive stress on an infinitely thick substrate. We study the effects of compliance of the substrate by modeling the system as a plate on an elastic foundation. The critical buckling condition is formulated. The asymptotic solutions of post-buckling deformation and the corresponding energy release rate of the interface crack are obtained with perturbation methods. The results show that the more compliant the substrate is, the easier for the film to buckle and easier for the interface crack to propagate after buckling.