30CrMnSi, one kind of the medium-carbon quenching and tempering steel( MCQTT) , has been widely utilized in some industrial fields. However, just like some other MCQTT, this kind of steel also faces such problem as ...30CrMnSi, one kind of the medium-carbon quenching and tempering steel( MCQTT) , has been widely utilized in some industrial fields. However, just like some other MCQTT, this kind of steel also faces such problem as delayed cracking in its welded joints. In this paper, the delayed cracking and microstructure of the joints of 30CrMnSi steel were researched by SEM. Moreover, a method called welding with trailing impacting and rolling (WTIR) was utilized to solve the delayed cracking problem by decreasing the residual welding stress in the joint of 30CrMnSi. The crack-free joints of 30CrMnSi steel were obtained by using optimized parameters.展开更多
The hydrogen-induced delayed cracking(HIDC)behaviors of two types of 1500 MPa grade hot stamping steels(HSSs)have been investigated by the method of slow strain rate tensile test and hydrogen permeation,where one is m...The hydrogen-induced delayed cracking(HIDC)behaviors of two types of 1500 MPa grade hot stamping steels(HSSs)have been investigated by the method of slow strain rate tensile test and hydrogen permeation,where one is manufactured by compact strip production(CSP)process which is a revolution to the traditional HSS and the other by the traditional cold rolling process.The results show that the performance of HSS produced by CSP is superior to that of the traditional HSS,due to lower hydrogen embrittlement index,lower hydrogen diffusion coefficient and lower hydrogen content.It has been found that HIDC behavior is closely associated with inclusions.The inclusions of HSS produced by CSP are mainly spherical Al-Ca-O and CaS,while the inclusions in the traditional HSS are TiN+AI2O3+MnS with sharp edges and corners.Based on these results,the influence of composition,shape and distribution of inclusions in HSS on HIDC and the mechanism of HIDC from the perspective of inclusions were analyzed and discussed.展开更多
The precipitation process of zirconium hydrides induced by stress and strain was investigated by means of electron microscopy in-situ.The precipitating hydrides induced by stress were found to be γ phase with orienta...The precipitation process of zirconium hydrides induced by stress and strain was investigated by means of electron microscopy in-situ.The precipitating hydrides induced by stress were found to be γ phase with orientation relationship of (110)_γ‖(110)_(αZr),(001)_γ‖ (0001)_(αZr) between γ-hydrides and surrounding matrix.The growth rate of γ-hydrides which was much faster along [110] direction brought them in taper shape.After fracture of y-hydrides,a new one will precipitate at the tip of cracks.This is the essential process of hydrogen-induced delayed cracking in Zircaloy.The precipitating hydrides induced by strain were found to be δ phase with both orientation relationships of(111)_δ‖(0001)_(αZr),(110)_δ‖ (110)_(αZr) or (010)_δ‖(0001)_(αZr),(001)_δ‖(110)_(αZr)between δ-hydride and surrounding matrix.The δ-hydrides become much finer as the strain rate increased.展开更多
Dual phase steel is nowadays widely applied in automotive construction as hot rolled and cold rolled HDG grades.The strength and elongation of DP steels are principally determined by the ratio of ferrite and martenist...Dual phase steel is nowadays widely applied in automotive construction as hot rolled and cold rolled HDG grades.The strength and elongation of DP steels are principally determined by the ratio of ferrite and marteniste in the microstructure.However,for practical forming in the press shop additional properties are important such as bendability and hole expansion ratio.These characteristics relate to the morphology and distribution of the phases in the microstructure.Niobium microalloying can influence not only the strength of DP steels but also particularly the phase morphology and homogeneity leading to significant improvement of the mechanical properties.The paper will show processing strategies involving Nb microalloying in DP steel production.The metallurgical mechanisms induced by Nb are discussed.This is also related to damage mechanisms occurring in DP steel during forming or application.Particularly the issue of delayed fracturing in ultra high strength DP steel will be addressed.展开更多
The hydrogen embrittlement(HE)fracture of advanced high-strength steels used in lightweight automobiles has received increasing public attention.The source,transmission,and movement of hydrogen,characterization parame...The hydrogen embrittlement(HE)fracture of advanced high-strength steels used in lightweight automobiles has received increasing public attention.The source,transmission,and movement of hydrogen,characterization parameters,and test methods of HE,as well as the characteristics and path of HE fractures,are introduced.The mechanisms and modes of crack propagation of HE and hydrogen-induced delayed fracture are reviewed.The recent progress surrounding micro and macro typical fracture characteristics and the influencing factors of HE are discussed.Finally,methods for improving HE resistance can be summarized as follows:(1)reducing crystalline grain and inclusion sizes(oxides,sulfides,and titanium nitride),(2)controlling nano-precipitates(niobium carbide,titanium carbide,and composite precipitation),and(3)increasing residual austenite content under the reasonable tension strength of steel.展开更多
Cracks and fractures occur during the assembly process to a type of torsional springs used in the aviation mechanism. Besides visual examination, other experimental techniques used for the investigation are: 1) frac...Cracks and fractures occur during the assembly process to a type of torsional springs used in the aviation mechanism. Besides visual examination, other experimental techniques used for the investigation are: 1) fracture characteristics, damage morphology and fractography by scanning electron microscopy (SEM), 2) spectrum analysis of covering, 3) metallographic observation of cracks and 4) hydrogen content testing. The results are obtained through the analysis of manufacture process and experimental data. Since no changes of microstructure are found, failures are irrelevant to the material. The cracks and fractures initiate on the inner surface, cracks initiate before the cadmium plating and after the winding. No obvious stress corrosion cracks are found near the crack source region. The opening direction of cracks is consistent with the residual tensile stress of the spring inner surface, and the springs are easy to contact hydrogen media between the spring winding and the cadmium plating. The cracks are caused by hydrogen-induced delayed cracking under the action of the residual tensile stress and hydrogen.展开更多
文摘30CrMnSi, one kind of the medium-carbon quenching and tempering steel( MCQTT) , has been widely utilized in some industrial fields. However, just like some other MCQTT, this kind of steel also faces such problem as delayed cracking in its welded joints. In this paper, the delayed cracking and microstructure of the joints of 30CrMnSi steel were researched by SEM. Moreover, a method called welding with trailing impacting and rolling (WTIR) was utilized to solve the delayed cracking problem by decreasing the residual welding stress in the joint of 30CrMnSi. The crack-free joints of 30CrMnSi steel were obtained by using optimized parameters.
基金The authors would like to express sincere gratitude to Dr.Na Luo for her insightful comments and helpful assistance to the revision of this manuscript.This work was supported by National Natural Science Foundation of China(No.51871172).
文摘The hydrogen-induced delayed cracking(HIDC)behaviors of two types of 1500 MPa grade hot stamping steels(HSSs)have been investigated by the method of slow strain rate tensile test and hydrogen permeation,where one is manufactured by compact strip production(CSP)process which is a revolution to the traditional HSS and the other by the traditional cold rolling process.The results show that the performance of HSS produced by CSP is superior to that of the traditional HSS,due to lower hydrogen embrittlement index,lower hydrogen diffusion coefficient and lower hydrogen content.It has been found that HIDC behavior is closely associated with inclusions.The inclusions of HSS produced by CSP are mainly spherical Al-Ca-O and CaS,while the inclusions in the traditional HSS are TiN+AI2O3+MnS with sharp edges and corners.Based on these results,the influence of composition,shape and distribution of inclusions in HSS on HIDC and the mechanism of HIDC from the perspective of inclusions were analyzed and discussed.
文摘The precipitation process of zirconium hydrides induced by stress and strain was investigated by means of electron microscopy in-situ.The precipitating hydrides induced by stress were found to be γ phase with orientation relationship of (110)_γ‖(110)_(αZr),(001)_γ‖ (0001)_(αZr) between γ-hydrides and surrounding matrix.The growth rate of γ-hydrides which was much faster along [110] direction brought them in taper shape.After fracture of y-hydrides,a new one will precipitate at the tip of cracks.This is the essential process of hydrogen-induced delayed cracking in Zircaloy.The precipitating hydrides induced by strain were found to be δ phase with both orientation relationships of(111)_δ‖(0001)_(αZr),(110)_δ‖ (110)_(αZr) or (010)_δ‖(0001)_(αZr),(001)_δ‖(110)_(αZr)between δ-hydride and surrounding matrix.The δ-hydrides become much finer as the strain rate increased.
文摘Dual phase steel is nowadays widely applied in automotive construction as hot rolled and cold rolled HDG grades.The strength and elongation of DP steels are principally determined by the ratio of ferrite and marteniste in the microstructure.However,for practical forming in the press shop additional properties are important such as bendability and hole expansion ratio.These characteristics relate to the morphology and distribution of the phases in the microstructure.Niobium microalloying can influence not only the strength of DP steels but also particularly the phase morphology and homogeneity leading to significant improvement of the mechanical properties.The paper will show processing strategies involving Nb microalloying in DP steel production.The metallurgical mechanisms induced by Nb are discussed.This is also related to damage mechanisms occurring in DP steel during forming or application.Particularly the issue of delayed fracturing in ultra high strength DP steel will be addressed.
基金This work was financially supported by the State Key Laboratory of Vehicle NVH and Safety Technology(NVHSKL-202104)the innovation research group of universities in Chongqing(CXQT21030,CXQT19031).
文摘The hydrogen embrittlement(HE)fracture of advanced high-strength steels used in lightweight automobiles has received increasing public attention.The source,transmission,and movement of hydrogen,characterization parameters,and test methods of HE,as well as the characteristics and path of HE fractures,are introduced.The mechanisms and modes of crack propagation of HE and hydrogen-induced delayed fracture are reviewed.The recent progress surrounding micro and macro typical fracture characteristics and the influencing factors of HE are discussed.Finally,methods for improving HE resistance can be summarized as follows:(1)reducing crystalline grain and inclusion sizes(oxides,sulfides,and titanium nitride),(2)controlling nano-precipitates(niobium carbide,titanium carbide,and composite precipitation),and(3)increasing residual austenite content under the reasonable tension strength of steel.
文摘Cracks and fractures occur during the assembly process to a type of torsional springs used in the aviation mechanism. Besides visual examination, other experimental techniques used for the investigation are: 1) fracture characteristics, damage morphology and fractography by scanning electron microscopy (SEM), 2) spectrum analysis of covering, 3) metallographic observation of cracks and 4) hydrogen content testing. The results are obtained through the analysis of manufacture process and experimental data. Since no changes of microstructure are found, failures are irrelevant to the material. The cracks and fractures initiate on the inner surface, cracks initiate before the cadmium plating and after the winding. No obvious stress corrosion cracks are found near the crack source region. The opening direction of cracks is consistent with the residual tensile stress of the spring inner surface, and the springs are easy to contact hydrogen media between the spring winding and the cadmium plating. The cracks are caused by hydrogen-induced delayed cracking under the action of the residual tensile stress and hydrogen.