In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the eq...In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.展开更多
Asymptotical stability independent of delay differential equation can be expressed in terms of zero criteria for polynomials in two independent complex variables. The necessary and sufficient conditions are given whic...Asymptotical stability independent of delay differential equation can be expressed in terms of zero criteria for polynomials in two independent complex variables. The necessary and sufficient conditions are given which differ from those obtained in the former literature.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of a...The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.展开更多
This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the nume...This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the numerical processes that satisfy an important asymptotic stability condition related to the class of test problems y′(t)=ay(t)+by(t-τ) with a,b∈C, Re(a)<-|b| and τ>0. We prove that the block θ method is GP stable if and only if the method is A stable for ordinary differential equations. Furthermore, it is proved that the P and GP stability are equivalent for the block θ method.展开更多
Deals with the asymptotic stability properties of θ methods for the pantograph equation and the linear delay differential algebraic equation with emphasis on the linear θ methods with variable stepsize schem...Deals with the asymptotic stability properties of θ methods for the pantograph equation and the linear delay differential algebraic equation with emphasis on the linear θ methods with variable stepsize schemes for the pantograph equation, proves that asymptotic stability is obtained if and only if θ>1/2, and studies further the one leg θ method for the linear delay differential algebraic equation and establishes the sufficient asymptotic ally differential algebraic stable condition θ=1.展开更多
By using the variational Liapunov method, stability properties in terms of two measures for delay differential equations are discussed. In the case that the unperturbed systems are ordinary differential systems, emplo...By using the variational Liapunov method, stability properties in terms of two measures for delay differential equations are discussed. In the case that the unperturbed systems are ordinary differential systems, employing auxiliary measure h*(t, x), criteria on nonuniform and uniform stability in terms of two measures for delay differential equations are established.展开更多
Deals with the application of Kreiss resolvent condition in the error growth analysis of numerical methods, and studies the stability of Runge Kutta method in respect of Kreiss resolvent condition with emphasis on the...Deals with the application of Kreiss resolvent condition in the error growth analysis of numerical methods, and studies the stability of Runge Kutta method in respect of Kreiss resolvent condition with emphasis on the study on the subclass of collocation methods with abscissas in [0,1] by applying the methods to the test equation U′(t)=λU(t)+μU(t-τ)τ>0 with complex constraints μ and λ, and proves under some assumptions on the R K methods that the error growth is uniformly bounded in the stability region.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the...This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.展开更多
The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was a...The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.展开更多
This paper deals with the numerical solution of initial value problems for pantograph differential equations with variable delays. We investigate the stability of one leg θ-methods in the numerical solution of these ...This paper deals with the numerical solution of initial value problems for pantograph differential equations with variable delays. We investigate the stability of one leg θ-methods in the numerical solution of these problems. Sufficient conditions for the asymptotic stability of θ-methods are given by Fourier analysis and Ergodic theory.展开更多
This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such a...This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.展开更多
Investigates the asymptotic stability of numerical solution of linear delay differential equations(DDEs) of the form y′(t)=Ly(t)+My(t-τ), t>0, y(t)=(t), -τ≤t≤0, where τ>0, L, M∈ C n×n and...Investigates the asymptotic stability of numerical solution of linear delay differential equations(DDEs) of the form y′(t)=Ly(t)+My(t-τ), t>0, y(t)=(t), -τ≤t≤0, where τ>0, L, M∈ C n×n and ∈ (,C n), which is formulated using the semigroup instead of classical step by step methods for numerical solution of this equation, as an abstract Cauchy problems and then discretized in a systems of ordinary differential equations(ODEs), and examines the asymptotic stability properties with respect to the class of DDEs with the complex coefficients which preserve the stability properties for a fixed delay.展开更多
This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, l...This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.展开更多
In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the...In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the SST method for nonlinear neutral stochastic differential equations with Poisson jumps is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the SST method with ∈ E (0, 2 -√2) is asymptotically mean square stable for all positive step sizes, and the SST method with ∈ E (2 -√2, 1) is asymptotically mean square stable for some step sizes. It is also proved in this paper that the SST method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved.展开更多
In this paper, a class of two-step continuity Runge-Kutta(TSCRK) methods for solving singular delay differential equations(DDEs) is presented. Analysis of numerical stability of this methods is given. We consider ...In this paper, a class of two-step continuity Runge-Kutta(TSCRK) methods for solving singular delay differential equations(DDEs) is presented. Analysis of numerical stability of this methods is given. We consider the two distinct cases: (i)τ≥ h, (ii)τ 〈 h, where the delay τ and step size h of the two-step continuity Runge-Kutta methods are both constant. The absolute stability regions of some methods are plotted and numerical examples show the efficiency of the method.展开更多
By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to ...By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to a certain fourth-order non-linear differential equation with delay are obtained.展开更多
In this paper, with the help of Lyapunov functional approach, sufficient conditions for the asymptotic stability of zero solution for a certain fourthorder non-linear delay differential equation are given.
Presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDE). Discussion on the numerical analogous results of the natural Runge-Kutta (NRK) methods for...Presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDE). Discussion on the numerical analogous results of the natural Runge-Kutta (NRK) methods for the same class of nonlinear NDDE; Review of the related concepts and results on RK methods; Information on the asymptotic stability and global stability of the induced NRK method.展开更多
In this paper, by constructing a Lyapunov functional, sufficient conditions for the uniform stability of the zero solution to a fourth-order vector delay differential equation are given.
文摘In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.
文摘Asymptotical stability independent of delay differential equation can be expressed in terms of zero criteria for polynomials in two independent complex variables. The necessary and sufficient conditions are given which differ from those obtained in the former literature.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.
基金the National Natural Science Foundation of China (10532050)
文摘The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.
文摘This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the numerical processes that satisfy an important asymptotic stability condition related to the class of test problems y′(t)=ay(t)+by(t-τ) with a,b∈C, Re(a)<-|b| and τ>0. We prove that the block θ method is GP stable if and only if the method is A stable for ordinary differential equations. Furthermore, it is proved that the P and GP stability are equivalent for the block θ method.
文摘Deals with the asymptotic stability properties of θ methods for the pantograph equation and the linear delay differential algebraic equation with emphasis on the linear θ methods with variable stepsize schemes for the pantograph equation, proves that asymptotic stability is obtained if and only if θ>1/2, and studies further the one leg θ method for the linear delay differential algebraic equation and establishes the sufficient asymptotic ally differential algebraic stable condition θ=1.
文摘By using the variational Liapunov method, stability properties in terms of two measures for delay differential equations are discussed. In the case that the unperturbed systems are ordinary differential systems, employing auxiliary measure h*(t, x), criteria on nonuniform and uniform stability in terms of two measures for delay differential equations are established.
文摘Deals with the application of Kreiss resolvent condition in the error growth analysis of numerical methods, and studies the stability of Runge Kutta method in respect of Kreiss resolvent condition with emphasis on the study on the subclass of collocation methods with abscissas in [0,1] by applying the methods to the test equation U′(t)=λU(t)+μU(t-τ)τ>0 with complex constraints μ and λ, and proves under some assumptions on the R K methods that the error growth is uniformly bounded in the stability region.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.
文摘The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.
文摘This paper deals with the numerical solution of initial value problems for pantograph differential equations with variable delays. We investigate the stability of one leg θ-methods in the numerical solution of these problems. Sufficient conditions for the asymptotic stability of θ-methods are given by Fourier analysis and Ergodic theory.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.
文摘Investigates the asymptotic stability of numerical solution of linear delay differential equations(DDEs) of the form y′(t)=Ly(t)+My(t-τ), t>0, y(t)=(t), -τ≤t≤0, where τ>0, L, M∈ C n×n and ∈ (,C n), which is formulated using the semigroup instead of classical step by step methods for numerical solution of this equation, as an abstract Cauchy problems and then discretized in a systems of ordinary differential equations(ODEs), and examines the asymptotic stability properties with respect to the class of DDEs with the complex coefficients which preserve the stability properties for a fixed delay.
基金supported by National Natural Science Foundation of China(Grant No.10671078)the Program for New Century Excellent Talents in University,the State Education Ministry of China. supported in part by E-Institutes of Shanghai Municipal Education Commission (No.E03004)+3 种基金National Natural Science Foundation of China(No.10671130)Shanghai Science and Technology Commission(No.06JC14092)Shuguang Project of Shanghai Municipal Education Commission(No.06SG45)the Shanghai Leading Academic Discipline Project(No.S30405)
文摘This paper deals with the delay-dependent stability of numerical methods for delay differential equations. First, a stability criterion of Runge-Kutta methods is extended to the case of general linear methods. Then, linear multistep methods are considered and a class of r(0)-stable methods are found. Later, some examples of r(0)-stable multistep multistage methods are given. Finally, numerical experiments are presented to confirm the theoretical results.
文摘In this paper, a split-step 0 (SST) method is introduced and used to solve the non- linear neutral stochastic differential delay equations with Poisson jumps (NSDDEwPJ). The mean square asymptotic stability of the SST method for nonlinear neutral stochastic differential equations with Poisson jumps is studied. It is proved that under the one-sided Lipschitz condition and the linear growth condition, the SST method with ∈ E (0, 2 -√2) is asymptotically mean square stable for all positive step sizes, and the SST method with ∈ E (2 -√2, 1) is asymptotically mean square stable for some step sizes. It is also proved in this paper that the SST method possesses a bounded absorbing set which is independent of initial data, and the mean square dissipativity of this method is also proved.
文摘In this paper, a class of two-step continuity Runge-Kutta(TSCRK) methods for solving singular delay differential equations(DDEs) is presented. Analysis of numerical stability of this methods is given. We consider the two distinct cases: (i)τ≥ h, (ii)τ 〈 h, where the delay τ and step size h of the two-step continuity Runge-Kutta methods are both constant. The absolute stability regions of some methods are plotted and numerical examples show the efficiency of the method.
基金supported by the National Natural Science Foundation of China(10461006)Basic Subject Foundation of Changzhou University(JS201004)
文摘By the Lyapunov functional approach, some better results on the asymptotic stabiBy the Lyapunov functional approach, some better results on the asymptotic stability and global asymptotic stability of zero solution to a certain fourth-order non-linear differential equation with delay are obtained.
基金supported by the National Natural Science Foundation of China(No.11671227)
文摘In this paper, with the help of Lyapunov functional approach, sufficient conditions for the asymptotic stability of zero solution for a certain fourthorder non-linear delay differential equation are given.
文摘Presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDE). Discussion on the numerical analogous results of the natural Runge-Kutta (NRK) methods for the same class of nonlinear NDDE; Review of the related concepts and results on RK methods; Information on the asymptotic stability and global stability of the induced NRK method.
文摘In this paper, by constructing a Lyapunov functional, sufficient conditions for the uniform stability of the zero solution to a fourth-order vector delay differential equation are given.