The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of a...The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.展开更多
Abstract: The existence of periodic solutions of a class of non- autonomous differential delay equations with the form x′(t)=-∑k=1^n-1f(t,x(t-kr)) is considered, where r 〉 0 is a given constant and f∈C(R...Abstract: The existence of periodic solutions of a class of non- autonomous differential delay equations with the form x′(t)=-∑k=1^n-1f(t,x(t-kr)) is considered, where r 〉 0 is a given constant and f∈C(R×R,R) is odd in x, r-periodic in t and satisfies some superlinear conditions at origin and at infinity. First, the delay system is changed to an equivalent Hamiltonian system. Then the existence of periodic solutions of the Hamiltonian system is studied. Periodic solutions of the Hamiltonian system can be obtained by critical points of a functional defined on a Hilbert space, i.e. , points satisfying φ′(z)=0. By using a linking theorem in critical point theory, the existence of critical points of the functional is obtained. Therefore, the existence of periodic solutions for the Hamiltonian system and its equivalent differential delay equation is established.展开更多
In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which t...In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which the composite Milstein method is mean square stable. Moreover, we get the step size condition under which the composite Milstein method is global mean square stable. A nonlinear test stochastic differential delay equation is given for numerical tests. The results of numerical tests verify the theoretical results proposed.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwi...In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.展开更多
Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related li...Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria...In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.展开更多
A new spectral Jacobi rational-Gauss collocation (JRC) method is proposed for solving the multi- pantograph delay differential equations on the half-line. The method is based on Jacobi rational functions and Gauss q...A new spectral Jacobi rational-Gauss collocation (JRC) method is proposed for solving the multi- pantograph delay differential equations on the half-line. The method is based on Jacobi rational functions and Gauss quadrature integration formula. The main idea for obtaining a semi-analytical solution for these equations is essentially developed by reducing the pantograph equations with their initial conditions to systems of algebraic equations in the unknown expansion coefficients. The convergence analysis of the method is analyzed. The method possesses the spectral accuracy. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. Indeed, the present method is compared favorably with other methods.展开更多
Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spac...Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spaces C^α (R, X), where X is a Banach space, A is a closed operator in X, F, G ∈L(C([-r, 0], X), X) are delay operators for some fixed r 〉 0.展开更多
We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are i...We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition.展开更多
Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential d...Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.展开更多
For an odd function f(x)defined only on a finite interval,this paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation(DDE)(?)(t)=-f(x(t-1))....For an odd function f(x)defined only on a finite interval,this paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation(DDE)(?)(t)=-f(x(t-1)).By use of the method of qualitative analysis combined with the constructing of special solutions a series of interesting results are obtained on these problems.展开更多
The main aim of this paper is to investigate the pth moment exponential stability of stochastic differential delay equations with Markovian switching.A specific Lyapunov function is introduced to obtain the required s...The main aim of this paper is to investigate the pth moment exponential stability of stochastic differential delay equations with Markovian switching.A specific Lyapunov function is introduced to obtain the required stability,and the almost sure exponential stability for the delay equations is discussed subsequently.展开更多
Consider the following equationwhere 6, c and τ are constants, and τ > 0, bc ≠ 0. In this paper, we establish a necessary and sufficient condition for zero solution of Eq.(*) to be asymptotically stable, which i...Consider the following equationwhere 6, c and τ are constants, and τ > 0, bc ≠ 0. In this paper, we establish a necessary and sufficient condition for zero solution of Eq.(*) to be asymptotically stable, which is easy to verify and apply.展开更多
By discussing the zeros of periodic.solutions we give in this paper a criterion for the existence of exactly n+1 simple 4-periodic solutions of the differential delay equation x(T)= -f(x(t-1)).
Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjectur...Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjecture forward.展开更多
Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some i...Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.展开更多
We first establish Maslov index for non-canonical Hamiltonian system by using symplectic transformation for Hamiltonian system.Then the existence of multiple periodic solutions for the non-canonical Hamiltonian system...We first establish Maslov index for non-canonical Hamiltonian system by using symplectic transformation for Hamiltonian system.Then the existence of multiple periodic solutions for the non-canonical Hamiltonian system is obtained by applying the Maslov index and Morse theory.As an application of the results,we study a class of non-autonomous differential delay equation which can be changed to non-canonical Hamiltonian system and obtain the existence of multiple periodic solutions for the equation by employing variational method.展开更多
The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condi...The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condition.We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition.We also study its strong convergence rates at time T and over a finite interval[0,T].Some numerical examples are given to illustrate the theoretical results.展开更多
基金Project supported by the National Education Committee Doctoral Foundation of China (20020558092)
文摘The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.
文摘Abstract: The existence of periodic solutions of a class of non- autonomous differential delay equations with the form x′(t)=-∑k=1^n-1f(t,x(t-kr)) is considered, where r 〉 0 is a given constant and f∈C(R×R,R) is odd in x, r-periodic in t and satisfies some superlinear conditions at origin and at infinity. First, the delay system is changed to an equivalent Hamiltonian system. Then the existence of periodic solutions of the Hamiltonian system is studied. Periodic solutions of the Hamiltonian system can be obtained by critical points of a functional defined on a Hilbert space, i.e. , points satisfying φ′(z)=0. By using a linking theorem in critical point theory, the existence of critical points of the functional is obtained. Therefore, the existence of periodic solutions for the Hamiltonian system and its equivalent differential delay equation is established.
基金Supported by National Natural Science Foundation of China(No.61272024)Anhui Provincial Natural Science Foundation(No.11040606M06)
文摘In this paper, we construct a composite Milstein method for nonlinear stochastic differential delay equations. Then we analyze the mean square stability for this method and obtain the step size condition under which the composite Milstein method is mean square stable. Moreover, we get the step size condition under which the composite Milstein method is global mean square stable. A nonlinear test stochastic differential delay equation is given for numerical tests. The results of numerical tests verify the theoretical results proposed.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
文摘In this paper we study optimal advertising problems that model the introduction of a new product into the market in the presence of carryover effects of the advertisement and with memory effects in the level of goodwill. In particular, we let the dynamics of the product goodwill to depend on the past, and also on past advertising efforts. We treat the problem by means of the stochastic Pontryagin maximum principle, that here is considered for a class of problems where in the state equation either the state or the control depend on the past. Moreover the control acts on the martingale term and the space of controls U can be chosen to be non-convex but now the space of controls U can be chosen to be non-convex. The maximum principle is thus formulated using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), which can be explicitly computed due to the specific characteristics of the model, and a second-order adjoint relation.
基金supported by the National Natural Science Foundation of China(12171050,12071047)the Fundamental Research Funds for the Central Universities(500421126)。
文摘Let f be an entire solution of the Tumura-Clunie type non-linear delay differential equation.We mainly investigate the dynamical properties of Julia sets of f,and the lower bound estimates of the measure of related limiting directions is verified.
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10171009) Tianyuan Young Fund of China (Grant No. 10226009).
文摘In the present paper we first obtain the comparison principle for the nonlinear stochastic differentialdelay equations with Markovian switching. Later, using this comparison principle, we obtain some stabilitycriteria, including stability in probability, asymptotic stability in probability, stability in the pth mean, asymptoticstability in the pth mean and the pth moment exponential stability of such equations. Finally, an example isgiven to illustrate the effectiveness of our results.
基金Supported in part by the National Natural Science Foundation of China under Grant No.11021161 and 10928102973 Program of China under Grant No.2011CB80800+2 种基金Chinese Academy of Sciences under Grant No.kjcx-yw-s7project grant of “Center for Research and Applications in Plasma Physics and Pulsed Power Technology,PBCT-Chile-ACT 26”Direccion de Programas de Investigacion,Universidad de Talca,Chile
文摘A new spectral Jacobi rational-Gauss collocation (JRC) method is proposed for solving the multi- pantograph delay differential equations on the half-line. The method is based on Jacobi rational functions and Gauss quadrature integration formula. The main idea for obtaining a semi-analytical solution for these equations is essentially developed by reducing the pantograph equations with their initial conditions to systems of algebraic equations in the unknown expansion coefficients. The convergence analysis of the method is analyzed. The method possesses the spectral accuracy. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented. Indeed, the present method is compared favorably with other methods.
基金supported by the NSF of China (No. 10571099)Specialized Research Fund for the Doctoral Program of Higher Educationthe Tsinghua Basic Research Foundation (JCpy2005056)
文摘Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spaces C^α (R, X), where X is a Banach space, A is a closed operator in X, F, G ∈L(C([-r, 0], X), X) are delay operators for some fixed r 〉 0.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61876192,12061034)the Natural Science Foundation of Jiangxi(Grant Nos.20192ACBL21007,2018ACB21001)+1 种基金the Fundamental Research Funds for the Central Universities(CZT20020)Academic Team in Universities(KTZ20051).
文摘We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition.
基金The authors are grateful to the anonymous referees for their valuable comments and corrections. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11401592), the Natural Science Foundation of Hunan Province (No. 13JJ5043), and the Mathematics and Interdisciplinary Sciences Project of Central South University.
文摘Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.
基金Supported by the National Natural Science Foudation of China.
文摘For an odd function f(x)defined only on a finite interval,this paper deals with the existence of periodic solutions and the number of simple periodic solutions of the differential delay equation(DDE)(?)(t)=-f(x(t-1)).By use of the method of qualitative analysis combined with the constructing of special solutions a series of interesting results are obtained on these problems.
基金the National Natural Science Foundation of China (No. 60574025).
文摘The main aim of this paper is to investigate the pth moment exponential stability of stochastic differential delay equations with Markovian switching.A specific Lyapunov function is introduced to obtain the required stability,and the almost sure exponential stability for the delay equations is discussed subsequently.
基金The work is supported by Natural Science Foundation of Heilongjiang Province of China, A0207.
文摘Consider the following equationwhere 6, c and τ are constants, and τ > 0, bc ≠ 0. In this paper, we establish a necessary and sufficient condition for zero solution of Eq.(*) to be asymptotically stable, which is easy to verify and apply.
基金Chinese National Foundation for Natural Sciences.
文摘By discussing the zeros of periodic.solutions we give in this paper a criterion for the existence of exactly n+1 simple 4-periodic solutions of the differential delay equation x(T)= -f(x(t-1)).
文摘Several new sufficient conditions are given for the global attractivity of solutions of a kind of delay difference equations. They either include or improve some known results and put the study of Ladas' conjecture forward.
文摘Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.
基金supported by Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.12KJB110015)
文摘We first establish Maslov index for non-canonical Hamiltonian system by using symplectic transformation for Hamiltonian system.Then the existence of multiple periodic solutions for the non-canonical Hamiltonian system is obtained by applying the Maslov index and Morse theory.As an application of the results,we study a class of non-autonomous differential delay equation which can be changed to non-canonical Hamiltonian system and obtain the existence of multiple periodic solutions for the equation by employing variational method.
文摘The key aim of this paper is to show the strong convergence of the truncated Euler-Maruyama method for neutral stochastic differential delay equations(NSDDEs)with Markovian switching(MS)without the linear growth condition.We present the truncated Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under the local Lipschitz condition plus Khasminskii-type condition.We also study its strong convergence rates at time T and over a finite interval[0,T].Some numerical examples are given to illustrate the theoretical results.