In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture dela...In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects.展开更多
The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of te...The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.展开更多
By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength stee...By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength steel(ADF1)for bolts.The sustained load bending test,sustained load tensile test and stress corrosion cracking test have been carried out to evaluate the delayed fracture resistance of steel ADFl and commercial steel 42 CrMo.The results showed that steel ADF1 has superior delayed fracture resistance to that of 42 CrMo steel.It's concluded that the superior delayed fracture resistance of ADF1 is mainly due to the increase of tempering temperature,fine homogeneously distributed MC carbide and fine prior austenite grain size.展开更多
The steel specimens of nominal composition 0.3C-1.0Cr-1.0Mn-2.0Si-1.0Ni-0.04 Nb were quenched and tempered or isothermally quenched from various temperatures.It is found that the steel quenched and tempered with a ten...The steel specimens of nominal composition 0.3C-1.0Cr-1.0Mn-2.0Si-1.0Ni-0.04 Nb were quenched and tempered or isothermally quenched from various temperatures.It is found that the steel quenched and tempered with a tensile strength of 1 500-1 600 MPa has a KISCC(critical stress intensity factor) value below 15.0 MPa · m1/2.The steel isothermally quenched with a tensile strength of 1 350-1 750 MPa has a KISCC value about 20.0 MPa·m1/2.In addition,with increase of isothermal quenching temperature,the tensile strength decreases greatly and KISCC value does not pronouncedly change.The microstructure of isothermally quenched specimens is composed of bainite and retained austenite.The delayed fracture resistance is dependent on the stability of austenite,which is in turn related to the retained austenite volume fraction and carbon content in austenite.展开更多
The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that d...The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.展开更多
Three different types of tensile strength (TS) 980 MPa grade advanced high-strength steels used in automotive applications, namely, 980MS ( martensite steel ), 980DP ( dual phase ) and 980QP ( quenching and par...Three different types of tensile strength (TS) 980 MPa grade advanced high-strength steels used in automotive applications, namely, 980MS ( martensite steel ), 980DP ( dual phase ) and 980QP ( quenching and partitioning) steels were examined. The delayed fracture resistance of the steels was evaluated using a U-bend test, slow strain rate test(SSRT) and a constant load tensile test. The results indicated that all the steels could pass the 300 h HC1 solution immersion test and none of the U-bend specimens was fractured in the test. However,the steels exhibited different susceptibilities to delayed fracture under SSRT and the constant load tensile tests. 980DP exhibited the highest resistance to delayed fracture among all the samples, while 980MS was found to be the most susceptible to delayed fracture.展开更多
BACKGROUND Currently,open reduction internal fixation is the conventional surgical method for treatment of double ulna and radius fracture.However,open reduction is associated with a high risk of complications.This ca...BACKGROUND Currently,open reduction internal fixation is the conventional surgical method for treatment of double ulna and radius fracture.However,open reduction is associated with a high risk of complications.This case of forearm double fracture involved a patient treated using an Acumed intramedullary nail.The patient experienced good follow-up outcomes.The Acumed forearm intramedullary nail enables early functional exercise and hastens healing of the fracture.Few studies have reported on the use of this approach for the treatment of fractures.CASE SUMMARY A 23-year-old male patient was admitted to hospital after 5 h of pain,swelling,and limited activity of left forearm caused by a careless fall.Physical examination showed stable basic vital signs,swelling of the left forearm,and severe pain when pressing on the injured part of the forearm.Further,friction was felt at the broken end of the bone;the skin was not punctured.Movement of the left hand was normal,and the left radial artery pulse was normal.Three-dimensional computed tomography examination showed an ulna fracture of the left forearm and comminuted fracture of the radius.The fracture was located in the upper third of the radius,with significant displacement on the fracture side.Clinical diagnosis further confirmed the left radius comminuted fracture and ulna fracture.After analyzing the fracture pattern,age,and other patient characteristics,we chose an Acumed nail for treatment and achieved good follow-up outcomes.CONCLUSION Acumed forearm intramedullary nail for fixation of ulna and radius fracture reduced complication risk and resulted in good follow-up outcomes.展开更多
The hydrogen-induced delayed fracture(HIDF)behavior of a 1300-MPa-grade high-strength bolt steel 42CrMoV containing 0.42 wt.%Cu was investigated by constant load tensile test in a pH 3.5 Walpole solution.It is shown t...The hydrogen-induced delayed fracture(HIDF)behavior of a 1300-MPa-grade high-strength bolt steel 42CrMoV containing 0.42 wt.%Cu was investigated by constant load tensile test in a pH 3.5 Walpole solution.It is shown that the addition of Cu is beneficial to enhance the HIDF resistance by~13%.The observation of the fracture surface revealed that the area fraction of brittle crack initiation zone decreased remarkably for the Cu-added steel.Both the corrosion pit depth and the corrosion rate of the Cu-added steel in the Walpole solution are notably decreased,which is primarily because of the formation of a Cu-rich protective compact rust layer and slightly higher corrosion potential.As a result,the absorbed hydrogen content in that solution was also decreased by~21%.It is concluded that the improvement in the HIDF resistance of the tested steel is primarily due to the increase in corrosion resistance and resultant decrease in the absorbed diffusible hydrogen content in the acidic condition.展开更多
Influence of vanadium and/or niobium additions on delayed fracture behavior in high strength spring steel was studied by hydrogen permeation method and slow strain rate technique (8SRT), and its mechanism was analyz...Influence of vanadium and/or niobium additions on delayed fracture behavior in high strength spring steel was studied by hydrogen permeation method and slow strain rate technique (8SRT), and its mechanism was analyzed. The results show that apparent diffusion coefficient of hydrogen in microalloyed spring steels Nb-V-steel and Nb-steel is lower than that in non-microalloyed steel 60Si2MnA. Percentage of strength reduction in SSRT in air after precharged hydrogen of the microalloyed steels is smaller than that of 60Si2MnA. Addition of the microalloys changes the fracture characteristics. Thence, vanadium and/or niobium additions are a very effective and economy means to improve the hydrogen-induced delayed fracture resistance of high strength spring steel.展开更多
To investigate the effect of heat treatment on mechanical properties and delayed fracture resistance of high strength steel,30MnSi prestressed concrete (PC) steel bars are quenched and tempered. Tensile results show...To investigate the effect of heat treatment on mechanical properties and delayed fracture resistance of high strength steel,30MnSi prestressed concrete (PC) steel bars are quenched and tempered. Tensile results show that,after 950 ℃ quenching and about 430 ℃ tempering,30MnSi PC steel bars have superior mechanical properties and delayed fracture resistance. Microstructural observation shows that 30MnSi steel bar is mainly composed of fine tempered sorbite (troostite) with carbide distributed along the lath martensite boundaries. It can be concluded that thermal refining is an effective way to improve mechanical properties and delayed fracture resistance of 30MnSi PC steel bar.展开更多
Recently the automotive industry has been confronted with the phenomenon of delayed fracture.This phenomenon was not relevant in earlier years since the strength level of the steels was generally below a critical leve...Recently the automotive industry has been confronted with the phenomenon of delayed fracture.This phenomenon was not relevant in earlier years since the strength level of the steels was generally below a critical level.However,delayed fracture is not necessarily related to an absolute strength value but rather to microstructural features as well as pre-existing micro-damage in the material that are likely to occur in ultrahigh strength steels.Niobium microalloying in combination with appropriate processing can effectively help to improve the resistance against delayed fracturing in such steels.The paper outlines a strategy how to achieve this based on microstructural control and hydrogen trapping.展开更多
The steel specimens of nominal composition 0.3C-1.0Cr-1.0Mn-2.0Si-1.0Ni- 0.04 Nb were quenched and tempered or isothermally quenched from various temperatures. It is found that the steel quenched and tempered with a...The steel specimens of nominal composition 0.3C-1.0Cr-1.0Mn-2.0Si-1.0Ni- 0.04 Nb were quenched and tempered or isothermally quenched from various temperatures. It is found that the steel quenched and tempered with a tensile strength of 1 500-1 600 MPa has a K ISCC (critical stress intensity factor) value below 15.0 MPa·m 1/2 . The steel isothermally quenched with a tensile strength of 1 350-1 750 MPa has a K ISCC value about 20.0 MPa·m 1/2 . In addition, with increase of isothermal quenching temperature, the tensile strength decreases greatly and K ISCC value does not pronouncedly change. The microstructure of isothermally quenched specimens is composed of bainite and retained austenite. The delayed fracture resistance is dependent on the stability of austenite, which is in turn related to the retained austenite volume fraction and carbon content in austenite.展开更多
Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of w...Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of welded structures of a powerful mining and transport machinery, are given. Electrodes and wires for main processes of arc welding of these steels have been devel- oped on the basis of a rational use of different systems of alloying (08KhN2GM,08KhNG2M, and also economical systems of type 10G25, ect. ). Main approaches to the technological provess- es of manufacture of structures of high - strength steels are formulated.They are mainly directed to the weakening of de offect of the factors which contribute to a delayed fracture of joints (diffusive hydrogen,unfavourable rates of cooling,level of residual stresses). When there are no stress concentrators (and at a low level of residual stresses) the welded joints of these steels have a good resistance to fatigue and brittle fractures.As a rule, they are prevented with the help of the known approaches.It is shown that in addition to them and due to a proper selection of conditions of welding the life of welded joints of the high - strength steels can be 1. 2 - 1. 4 times in- creased.展开更多
The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of te...The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.展开更多
Automobile industry tries to reduce the weight of automobile using high-strength steels.However,the high-strength steels are highly susceptible to delayed-fracture caused by hydrogen embrittlement.With increasing the ...Automobile industry tries to reduce the weight of automobile using high-strength steels.However,the high-strength steels are highly susceptible to delayed-fracture caused by hydrogen embrittlement.With increasing the strength,hydrogen embrittlement is more sensitive to diffusible hydrogen.The mechanism of delayed-fracture and the relationship with the microstructure and alloying elements are still ambiguous.This study analyzed the effect of the size and the spheroidization rate for the carbides on hydrogen-induced delayed fracture for 1GPa TS steel.展开更多
文摘In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects.
基金Item Sponsored by National Key Fundamental Research and Development Project of China(G1998061503)National Science and Technology Development Project of China(2002BA314B08)
文摘The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.
基金Sponsored by National Key Fundamental Research Project(G1998061503)
文摘By the increase in Mo content,the addition of microalloying elements V and Nb and by reducing the contents of Mn,P and S based on the composition of steel 42 CrMo,we have developed a 1 300 MPa-grade high strength steel(ADF1)for bolts.The sustained load bending test,sustained load tensile test and stress corrosion cracking test have been carried out to evaluate the delayed fracture resistance of steel ADFl and commercial steel 42 CrMo.The results showed that steel ADF1 has superior delayed fracture resistance to that of 42 CrMo steel.It's concluded that the superior delayed fracture resistance of ADF1 is mainly due to the increase of tempering temperature,fine homogeneously distributed MC carbide and fine prior austenite grain size.
基金Item Sponsored by National Key Fundamental Research and Development Programme of China(G1998061503)
文摘The steel specimens of nominal composition 0.3C-1.0Cr-1.0Mn-2.0Si-1.0Ni-0.04 Nb were quenched and tempered or isothermally quenched from various temperatures.It is found that the steel quenched and tempered with a tensile strength of 1 500-1 600 MPa has a KISCC(critical stress intensity factor) value below 15.0 MPa · m1/2.The steel isothermally quenched with a tensile strength of 1 350-1 750 MPa has a KISCC value about 20.0 MPa·m1/2.In addition,with increase of isothermal quenching temperature,the tensile strength decreases greatly and KISCC value does not pronouncedly change.The microstructure of isothermally quenched specimens is composed of bainite and retained austenite.The delayed fracture resistance is dependent on the stability of austenite,which is in turn related to the retained austenite volume fraction and carbon content in austenite.
基金Item Sponsored by National Key Fundamental Research and Development Programme of China (2004CB619104)
文摘The delayed fracture behavior of medium carbon high strength spring steel containing different amounts of boron (0. 000 5%, 0. 001 6 %) was studied using sustained load delayed fracture test. The results show that delayed fracture resistance of boron containing steels is higher than that of conventional steel 60Si2MnA at the same strength level and it increases with the increase of boron eontent from 0. 000 5% to 0. 001 6%. The delayed fracture mode is mainly intergranular in the boron containing steels tempered at 350℃, which indicates that the addition of boron does not change the fracture character. However, the increase of boron content enlarges the size of the crack initia tion area. Further study of phase analysis indicates that most boron is in solid solution, and only a very small quantity of boron is in the M3 (C, B) phase.
文摘Three different types of tensile strength (TS) 980 MPa grade advanced high-strength steels used in automotive applications, namely, 980MS ( martensite steel ), 980DP ( dual phase ) and 980QP ( quenching and partitioning) steels were examined. The delayed fracture resistance of the steels was evaluated using a U-bend test, slow strain rate test(SSRT) and a constant load tensile test. The results indicated that all the steels could pass the 300 h HC1 solution immersion test and none of the U-bend specimens was fractured in the test. However,the steels exhibited different susceptibilities to delayed fracture under SSRT and the constant load tensile tests. 980DP exhibited the highest resistance to delayed fracture among all the samples, while 980MS was found to be the most susceptible to delayed fracture.
文摘BACKGROUND Currently,open reduction internal fixation is the conventional surgical method for treatment of double ulna and radius fracture.However,open reduction is associated with a high risk of complications.This case of forearm double fracture involved a patient treated using an Acumed intramedullary nail.The patient experienced good follow-up outcomes.The Acumed forearm intramedullary nail enables early functional exercise and hastens healing of the fracture.Few studies have reported on the use of this approach for the treatment of fractures.CASE SUMMARY A 23-year-old male patient was admitted to hospital after 5 h of pain,swelling,and limited activity of left forearm caused by a careless fall.Physical examination showed stable basic vital signs,swelling of the left forearm,and severe pain when pressing on the injured part of the forearm.Further,friction was felt at the broken end of the bone;the skin was not punctured.Movement of the left hand was normal,and the left radial artery pulse was normal.Three-dimensional computed tomography examination showed an ulna fracture of the left forearm and comminuted fracture of the radius.The fracture was located in the upper third of the radius,with significant displacement on the fracture side.Clinical diagnosis further confirmed the left radius comminuted fracture and ulna fracture.After analyzing the fracture pattern,age,and other patient characteristics,we chose an Acumed nail for treatment and achieved good follow-up outcomes.CONCLUSION Acumed forearm intramedullary nail for fixation of ulna and radius fracture reduced complication risk and resulted in good follow-up outcomes.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52071010).
文摘The hydrogen-induced delayed fracture(HIDF)behavior of a 1300-MPa-grade high-strength bolt steel 42CrMoV containing 0.42 wt.%Cu was investigated by constant load tensile test in a pH 3.5 Walpole solution.It is shown that the addition of Cu is beneficial to enhance the HIDF resistance by~13%.The observation of the fracture surface revealed that the area fraction of brittle crack initiation zone decreased remarkably for the Cu-added steel.Both the corrosion pit depth and the corrosion rate of the Cu-added steel in the Walpole solution are notably decreased,which is primarily because of the formation of a Cu-rich protective compact rust layer and slightly higher corrosion potential.As a result,the absorbed hydrogen content in that solution was also decreased by~21%.It is concluded that the improvement in the HIDF resistance of the tested steel is primarily due to the increase in corrosion resistance and resultant decrease in the absorbed diffusible hydrogen content in the acidic condition.
基金Item Sponsored by CITIC-CBMM Niobium Steel Research and Development Projects of China(2007RMJS-D031)
文摘Influence of vanadium and/or niobium additions on delayed fracture behavior in high strength spring steel was studied by hydrogen permeation method and slow strain rate technique (8SRT), and its mechanism was analyzed. The results show that apparent diffusion coefficient of hydrogen in microalloyed spring steels Nb-V-steel and Nb-steel is lower than that in non-microalloyed steel 60Si2MnA. Percentage of strength reduction in SSRT in air after precharged hydrogen of the microalloyed steels is smaller than that of 60Si2MnA. Addition of the microalloys changes the fracture characteristics. Thence, vanadium and/or niobium additions are a very effective and economy means to improve the hydrogen-induced delayed fracture resistance of high strength spring steel.
基金Sponsored by National Natural Science Foundation of China (50474015)
文摘To investigate the effect of heat treatment on mechanical properties and delayed fracture resistance of high strength steel,30MnSi prestressed concrete (PC) steel bars are quenched and tempered. Tensile results show that,after 950 ℃ quenching and about 430 ℃ tempering,30MnSi PC steel bars have superior mechanical properties and delayed fracture resistance. Microstructural observation shows that 30MnSi steel bar is mainly composed of fine tempered sorbite (troostite) with carbide distributed along the lath martensite boundaries. It can be concluded that thermal refining is an effective way to improve mechanical properties and delayed fracture resistance of 30MnSi PC steel bar.
文摘Recently the automotive industry has been confronted with the phenomenon of delayed fracture.This phenomenon was not relevant in earlier years since the strength level of the steels was generally below a critical level.However,delayed fracture is not necessarily related to an absolute strength value but rather to microstructural features as well as pre-existing micro-damage in the material that are likely to occur in ultrahigh strength steels.Niobium microalloying in combination with appropriate processing can effectively help to improve the resistance against delayed fracturing in such steels.The paper outlines a strategy how to achieve this based on microstructural control and hydrogen trapping.
基金Item Sponsored by Provincial Natural Science Foundation of Inner Mongolia of China(9610E22)
文摘The steel specimens of nominal composition 0.3C-1.0Cr-1.0Mn-2.0Si-1.0Ni- 0.04 Nb were quenched and tempered or isothermally quenched from various temperatures. It is found that the steel quenched and tempered with a tensile strength of 1 500-1 600 MPa has a K ISCC (critical stress intensity factor) value below 15.0 MPa·m 1/2 . The steel isothermally quenched with a tensile strength of 1 350-1 750 MPa has a K ISCC value about 20.0 MPa·m 1/2 . In addition, with increase of isothermal quenching temperature, the tensile strength decreases greatly and K ISCC value does not pronouncedly change. The microstructure of isothermally quenched specimens is composed of bainite and retained austenite. The delayed fracture resistance is dependent on the stability of austenite, which is in turn related to the retained austenite volume fraction and carbon content in austenite.
文摘Composition and service properties of high - strength low-alloyed steels with 590-980 MPa yield strength,which find an application in Russia, Belorus,Ukraine and other countries of the former USSR in manufacture of welded structures of a powerful mining and transport machinery, are given. Electrodes and wires for main processes of arc welding of these steels have been devel- oped on the basis of a rational use of different systems of alloying (08KhN2GM,08KhNG2M, and also economical systems of type 10G25, ect. ). Main approaches to the technological provess- es of manufacture of structures of high - strength steels are formulated.They are mainly directed to the weakening of de offect of the factors which contribute to a delayed fracture of joints (diffusive hydrogen,unfavourable rates of cooling,level of residual stresses). When there are no stress concentrators (and at a low level of residual stresses) the welded joints of these steels have a good resistance to fatigue and brittle fractures.As a rule, they are prevented with the help of the known approaches.It is shown that in addition to them and due to a proper selection of conditions of welding the life of welded joints of the high - strength steels can be 1. 2 - 1. 4 times in- creased.
文摘The delayed fracture behaviors of CrMo-type high strength steels containing different amount of titanium(0to 0.10%)were studied.The steels were quenched at 880℃ and tempered from 400℃ to 650℃,and a wide range of tensile strength was obtained.The sustained load tensile test was carried out by using notched tensile specimens in Walpole solution.The experimental results showed that with higher strength,the Ti-microalloyed steels show higher resistance to delayed fracture compared with non-microalloyed steel due to titanium beneficial role and microstructure changes.The undissolved TiC is uniformly distributed as strong hydrogen traps,retarding or preventing the diffusion and accumulation of hydrogen to lower-interaction energy sites,such as prior austenite and martensite lath boundaries in stress concentration area.Meanwhile,the grain refining effect of titanium is also an important factor to improve the delayed fracture resistance of Ti-microalloyed steels.The characteristics of delayed fracture remain nearly the same with titanium addition.
文摘Automobile industry tries to reduce the weight of automobile using high-strength steels.However,the high-strength steels are highly susceptible to delayed-fracture caused by hydrogen embrittlement.With increasing the strength,hydrogen embrittlement is more sensitive to diffusible hydrogen.The mechanism of delayed-fracture and the relationship with the microstructure and alloying elements are still ambiguous.This study analyzed the effect of the size and the spheroidization rate for the carbides on hydrogen-induced delayed fracture for 1GPa TS steel.