期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Suppressive Influence of Time- Space White Noise on the Explosion of Solutions of Stochastic Fokker- Planck Delay Differential Equations
1
作者 Augustine O. Atonuje Jonathan Tsetimi 《Journal of Mathematics and System Science》 2016年第7期284-290,共7页
It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventual... It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion. 展开更多
关键词 Explosion non-linear stochastic Fokker Planck delay differential equation time - space white noise finite time.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部