This paper addresses sparse channels estimation problem for the generalized linear models(GLM)in the orthogonal time frequency space(OTFS)underwater acoustic(UWA)system.OTFS works in the delay-Doppler domain,where tim...This paper addresses sparse channels estimation problem for the generalized linear models(GLM)in the orthogonal time frequency space(OTFS)underwater acoustic(UWA)system.OTFS works in the delay-Doppler domain,where timevarying channels are characterized as delay-Doppler impulse responses.In fact,a typical doubly spread UWA channel is associated with several resolvable paths,which exhibits a structured sparsity in the delayDoppler domain.To leverage the structured sparsity of the doubly spread UWA channel,we develop a structured sparsity-based generalized approximated message passing(GAMP)algorithm for reliable channel estimation in quantized OTFS systems.The proposed algorithm has a lower computational complexity compared to the conventional Bayesian algorithm.In addition,the expectation maximum algorithm is employed to learn the sparsity ratio and the noise variance.Simulation and experimental results show that the proposed algorithm has superior performance and low computational complexity for quantized OTFS systems.展开更多
The notion of a communication channel is one of the key notions in information theory but like the notion “information” it has not any general mathematical definition. The existing examples of the communication chan...The notion of a communication channel is one of the key notions in information theory but like the notion “information” it has not any general mathematical definition. The existing examples of the communication channels: the Gaussian ones;the binary symmetric ones;the ones with symbol drop-out and drop-in;the ones with error packets etc., characterize the distortions which take place in information conducted through the corresponding channel.展开更多
This article presents a pioneering solution to address the challenges of reconfigurable intelligent surface(RIS),employing a cascaded channel decoupling strategy.This novel method streamlines the RIS regulation matrix...This article presents a pioneering solution to address the challenges of reconfigurable intelligent surface(RIS),employing a cascaded channel decoupling strategy.This novel method streamlines the RIS regulation matrix by dividing the process of electromagnetic wave modulation into two separate sub-processes:virtual receiving response and virtual regular transmission,resulting in the decoupling of the RIS cascaded channel.Furthermore,the paper explores the practical implementation of this channel decoupling method in two typical scenarios,including single-user and multi-user access,offering detailed insights into its application.Through numerical simulations,the article demonstrates the effectiveness and reduced complexity of the proposed scheme in enhancing the efficiency of the RIS regulation matrix.展开更多
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中至关重要的一项技术是信道估计,本文提出一种基于矩阵恢复的OFDM信道估计方法,将连续多个OFDM信号的频域信道构造成一个信道矩阵,由于这个信道矩阵是低秩的,所以可以...正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中至关重要的一项技术是信道估计,本文提出一种基于矩阵恢复的OFDM信道估计方法,将连续多个OFDM信号的频域信道构造成一个信道矩阵,由于这个信道矩阵是低秩的,所以可以将信道估计问题转换为信道矩阵的加权截断核范数最小化问题,并使用改进的奇异值阈值(Singular Value Thresholding,SVT)算法对信道矩阵进行恢复。仿真结果表明,本文提出的方法和传统信道估计算法相比,使用相同导频数可以获得更高的估计精度,在获得相同估计精度时,消耗导频数更少。与基于压缩感知的信道估计方法相比,本文方法消耗相同数量的导频,但可直接获得高精度的OFDM信道的频域估计。展开更多
A method based on the maximum a posteriori probability (MAP) criterion is proposed to estimate the channel frequency response (CFR) matrix and interference- plus-noise spatial covariance matrix (SCM) for multipl...A method based on the maximum a posteriori probability (MAP) criterion is proposed to estimate the channel frequency response (CFR) matrix and interference- plus-noise spatial covariance matrix (SCM) for multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems. An iterative solution is proposed to solve the MAP-based problem and an interference rejection combining (IRC) receiver is derived to suppress co-channel interference (CCI) based on the estimated CFR and SCM. Furthermore, considering the property of SCM, i. e., Hermitian and semi-definite, two schemes are proposed to improve the accuracy of SCM estimation. The first scheme is proposed to parameterize the SCM via a sum of a series of matrices in the time domain. The second scheme measures the SCM on each subcarrier as a low-rank model while the model order can be chosen through the penalized-likelihood approach. Simulation results are provided to demonstrate the effectiveness of the proposed method.展开更多
基金supported by National Natural Science Foundation of China(No.62071383)。
文摘This paper addresses sparse channels estimation problem for the generalized linear models(GLM)in the orthogonal time frequency space(OTFS)underwater acoustic(UWA)system.OTFS works in the delay-Doppler domain,where timevarying channels are characterized as delay-Doppler impulse responses.In fact,a typical doubly spread UWA channel is associated with several resolvable paths,which exhibits a structured sparsity in the delayDoppler domain.To leverage the structured sparsity of the doubly spread UWA channel,we develop a structured sparsity-based generalized approximated message passing(GAMP)algorithm for reliable channel estimation in quantized OTFS systems.The proposed algorithm has a lower computational complexity compared to the conventional Bayesian algorithm.In addition,the expectation maximum algorithm is employed to learn the sparsity ratio and the noise variance.Simulation and experimental results show that the proposed algorithm has superior performance and low computational complexity for quantized OTFS systems.
文摘The notion of a communication channel is one of the key notions in information theory but like the notion “information” it has not any general mathematical definition. The existing examples of the communication channels: the Gaussian ones;the binary symmetric ones;the ones with symbol drop-out and drop-in;the ones with error packets etc., characterize the distortions which take place in information conducted through the corresponding channel.
文摘This article presents a pioneering solution to address the challenges of reconfigurable intelligent surface(RIS),employing a cascaded channel decoupling strategy.This novel method streamlines the RIS regulation matrix by dividing the process of electromagnetic wave modulation into two separate sub-processes:virtual receiving response and virtual regular transmission,resulting in the decoupling of the RIS cascaded channel.Furthermore,the paper explores the practical implementation of this channel decoupling method in two typical scenarios,including single-user and multi-user access,offering detailed insights into its application.Through numerical simulations,the article demonstrates the effectiveness and reduced complexity of the proposed scheme in enhancing the efficiency of the RIS regulation matrix.
文摘正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)中至关重要的一项技术是信道估计,本文提出一种基于矩阵恢复的OFDM信道估计方法,将连续多个OFDM信号的频域信道构造成一个信道矩阵,由于这个信道矩阵是低秩的,所以可以将信道估计问题转换为信道矩阵的加权截断核范数最小化问题,并使用改进的奇异值阈值(Singular Value Thresholding,SVT)算法对信道矩阵进行恢复。仿真结果表明,本文提出的方法和传统信道估计算法相比,使用相同导频数可以获得更高的估计精度,在获得相同估计精度时,消耗导频数更少。与基于压缩感知的信道估计方法相比,本文方法消耗相同数量的导频,但可直接获得高精度的OFDM信道的频域估计。
基金The National Natural Science Foundation of China(No.61320106003,61222102)the National High Technology Research and Development Program of China(863 Program)(No.2012AA01A506)
文摘A method based on the maximum a posteriori probability (MAP) criterion is proposed to estimate the channel frequency response (CFR) matrix and interference- plus-noise spatial covariance matrix (SCM) for multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems. An iterative solution is proposed to solve the MAP-based problem and an interference rejection combining (IRC) receiver is derived to suppress co-channel interference (CCI) based on the estimated CFR and SCM. Furthermore, considering the property of SCM, i. e., Hermitian and semi-definite, two schemes are proposed to improve the accuracy of SCM estimation. The first scheme is proposed to parameterize the SCM via a sum of a series of matrices in the time domain. The second scheme measures the SCM on each subcarrier as a low-rank model while the model order can be chosen through the penalized-likelihood approach. Simulation results are provided to demonstrate the effectiveness of the proposed method.