In order to optimize cost and decrease complexity with a delay upper bound, the delay-constrained Steiner tree problem is addressed. Base on the new delay-constrained MPH (DCMPH_1) algorithm and through improving on t...In order to optimize cost and decrease complexity with a delay upper bound, the delay-constrained Steiner tree problem is addressed. Base on the new delay-constrained MPH (DCMPH_1) algorithm and through improving on the select path, an improved MPH-based delay-constrained Steiner tree algorithm is presented in this paper. With the new algorithm a destination node can join the existing multicast tree by selecting the path whose cost is the least;if the path’s delay destroys the delay upper bound, the least-cost path which meets the delay upper bound can be constructed through the least-cost path, and then is used to take the place of the least-cost path to join the current multicast tree. By the way, a low-cost multicast spanning tree can be constructed and the delay upper bound isn’t destroyed. Experimental results through simulations show that the new algorithm is superior to DCMPH_1 algorithm in the performance of spanning tree and the space complexity.展开更多
文摘In order to optimize cost and decrease complexity with a delay upper bound, the delay-constrained Steiner tree problem is addressed. Base on the new delay-constrained MPH (DCMPH_1) algorithm and through improving on the select path, an improved MPH-based delay-constrained Steiner tree algorithm is presented in this paper. With the new algorithm a destination node can join the existing multicast tree by selecting the path whose cost is the least;if the path’s delay destroys the delay upper bound, the least-cost path which meets the delay upper bound can be constructed through the least-cost path, and then is used to take the place of the least-cost path to join the current multicast tree. By the way, a low-cost multicast spanning tree can be constructed and the delay upper bound isn’t destroyed. Experimental results through simulations show that the new algorithm is superior to DCMPH_1 algorithm in the performance of spanning tree and the space complexity.