期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
dCompaction: Speeding up Compaction of the LSM-Tree via Delayed Compaction 被引量:3
1
作者 Feng-Feng Pan Yin-Liang Yue Jin Xiong 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第1期41-54,共14页
Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used ... Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used in KV storage systems like BigTable and RocksDB. Conventional LSM-tree organizes KV items into multiple, successively larger components, and uses compaction to push KV items from one smaller component to another adjacent larger component until the KV items reach the largest component. Unfortunately, current compaction scheme incurs significant write amplification due to repeated KV item reads and writes, and then results in poor throughput. We propose a new compaction scheme, delayed compaction (dCompaction) that decreases write amplification, dCompaction postpones some compactions and gathers them into the following compaction. In this way, it avoids KV item reads and writes during compaction, and consequently improves the throughput of LSM-tree based KV stores. We implement dCompaction on RocksDB, and conduct extensive experiments. Validation using YCSB framework shows that compared with RocksDB, dCompaction has about 40% write performance improvements and also comparable read performance. 展开更多
关键词 key-value store Log-Structured Merge-tree (LSM-tree) write amplification delayed compaction
原文传递
Significance of compaction time delay on compaction and strength characteristics of sulfate resistant cement-treated expansive soil 被引量:1
2
作者 P.Sriram Karthick Raja T.Thyagaraj 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1193-1202,共10页
The addition of cement for stabilization of expansive soils is one of the most commonly used methods.As with every calcium-based stabilizer,the time delay between the physical mixing of the stabilizer and compaction p... The addition of cement for stabilization of expansive soils is one of the most commonly used methods.As with every calcium-based stabilizer,the time delay between the physical mixing of the stabilizer and compaction plays an important role in achieving the desired results after stabilization.However,a clear insight on the determination of optimum time delay for achieving the maximum desired compaction properties of cement-stabilized soils is yet to be established.Furthermore,the recent studies highlighted the use of sulfate to mitigate the negative effect of compaction time delay.The only drawback with the use of sulfate along with calcium-based stabilizers is the formation of ettringite,which deteriorates the stabilized soil matrix.In view of this,the present study is aimed at using the sulfate resistant cement(SRC)as a stabilizer along with the controlled addition of sulfate solutions to mitigate the negative effect of compaction time delay in stabilizing the expansive soil.To bring out the above effects,three periods of time delays(0 h,6 h and 24 h)and three sulfate concentrations of 5000 parts per million(ppm),10,000 ppm and 20,000 ppm were adopted.The experimental results showed that the delay in compaction resulted in the formation of clogs and reduction of strength of SRC-stabilized expansive soil.Upon sulfate addition to SRC-stabilized expansive soil,the formation clogs was not curtailed and resulted in the formation of ettringite clusters.These formations were captured with the help of scanning electron microscope(SEM)images and validated with electron dispersive X-ray spectroscopy(EDAX)analysis.Further,an attempt is also made to explain the mechanism of density and strength reduction with the aid of physico-chemical properties and mercury intrusion porosimetry(MIP)studies. 展开更多
关键词 compaction time delay Ettringite Sulfate resistant cement(SRC) Mercury intrusive porosimetry(MIP) SULFATE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部