Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used ...Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used in KV storage systems like BigTable and RocksDB. Conventional LSM-tree organizes KV items into multiple, successively larger components, and uses compaction to push KV items from one smaller component to another adjacent larger component until the KV items reach the largest component. Unfortunately, current compaction scheme incurs significant write amplification due to repeated KV item reads and writes, and then results in poor throughput. We propose a new compaction scheme, delayed compaction (dCompaction) that decreases write amplification, dCompaction postpones some compactions and gathers them into the following compaction. In this way, it avoids KV item reads and writes during compaction, and consequently improves the throughput of LSM-tree based KV stores. We implement dCompaction on RocksDB, and conduct extensive experiments. Validation using YCSB framework shows that compared with RocksDB, dCompaction has about 40% write performance improvements and also comparable read performance.展开更多
The addition of cement for stabilization of expansive soils is one of the most commonly used methods.As with every calcium-based stabilizer,the time delay between the physical mixing of the stabilizer and compaction p...The addition of cement for stabilization of expansive soils is one of the most commonly used methods.As with every calcium-based stabilizer,the time delay between the physical mixing of the stabilizer and compaction plays an important role in achieving the desired results after stabilization.However,a clear insight on the determination of optimum time delay for achieving the maximum desired compaction properties of cement-stabilized soils is yet to be established.Furthermore,the recent studies highlighted the use of sulfate to mitigate the negative effect of compaction time delay.The only drawback with the use of sulfate along with calcium-based stabilizers is the formation of ettringite,which deteriorates the stabilized soil matrix.In view of this,the present study is aimed at using the sulfate resistant cement(SRC)as a stabilizer along with the controlled addition of sulfate solutions to mitigate the negative effect of compaction time delay in stabilizing the expansive soil.To bring out the above effects,three periods of time delays(0 h,6 h and 24 h)and three sulfate concentrations of 5000 parts per million(ppm),10,000 ppm and 20,000 ppm were adopted.The experimental results showed that the delay in compaction resulted in the formation of clogs and reduction of strength of SRC-stabilized expansive soil.Upon sulfate addition to SRC-stabilized expansive soil,the formation clogs was not curtailed and resulted in the formation of ettringite clusters.These formations were captured with the help of scanning electron microscope(SEM)images and validated with electron dispersive X-ray spectroscopy(EDAX)analysis.Further,an attempt is also made to explain the mechanism of density and strength reduction with the aid of physico-chemical properties and mercury intrusion porosimetry(MIP)studies.展开更多
基金This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB1000202 and the National Natural Science Foundation of China under Grant Nos. 61303056 and 61379042.
文摘Key-value (KV) stores have become a backbone of large-scale applications in today's data centers. Write- optimized data structures like the Log-Structured Merge-tree (LSM-tree) and their variants are widely used in KV storage systems like BigTable and RocksDB. Conventional LSM-tree organizes KV items into multiple, successively larger components, and uses compaction to push KV items from one smaller component to another adjacent larger component until the KV items reach the largest component. Unfortunately, current compaction scheme incurs significant write amplification due to repeated KV item reads and writes, and then results in poor throughput. We propose a new compaction scheme, delayed compaction (dCompaction) that decreases write amplification, dCompaction postpones some compactions and gathers them into the following compaction. In this way, it avoids KV item reads and writes during compaction, and consequently improves the throughput of LSM-tree based KV stores. We implement dCompaction on RocksDB, and conduct extensive experiments. Validation using YCSB framework shows that compared with RocksDB, dCompaction has about 40% write performance improvements and also comparable read performance.
文摘The addition of cement for stabilization of expansive soils is one of the most commonly used methods.As with every calcium-based stabilizer,the time delay between the physical mixing of the stabilizer and compaction plays an important role in achieving the desired results after stabilization.However,a clear insight on the determination of optimum time delay for achieving the maximum desired compaction properties of cement-stabilized soils is yet to be established.Furthermore,the recent studies highlighted the use of sulfate to mitigate the negative effect of compaction time delay.The only drawback with the use of sulfate along with calcium-based stabilizers is the formation of ettringite,which deteriorates the stabilized soil matrix.In view of this,the present study is aimed at using the sulfate resistant cement(SRC)as a stabilizer along with the controlled addition of sulfate solutions to mitigate the negative effect of compaction time delay in stabilizing the expansive soil.To bring out the above effects,three periods of time delays(0 h,6 h and 24 h)and three sulfate concentrations of 5000 parts per million(ppm),10,000 ppm and 20,000 ppm were adopted.The experimental results showed that the delay in compaction resulted in the formation of clogs and reduction of strength of SRC-stabilized expansive soil.Upon sulfate addition to SRC-stabilized expansive soil,the formation clogs was not curtailed and resulted in the formation of ettringite clusters.These formations were captured with the help of scanning electron microscope(SEM)images and validated with electron dispersive X-ray spectroscopy(EDAX)analysis.Further,an attempt is also made to explain the mechanism of density and strength reduction with the aid of physico-chemical properties and mercury intrusion porosimetry(MIP)studies.