The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with dive...The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.展开更多
It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the bous...It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-com...Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-commerce increases tremendously,the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction.One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem(MVPPDP),where a selected set of pickup and delivery customers need to be served within certain allowed trip time.In this paper,we proposed hybrid clustering algorithms with the greedy randomised adaptive search procedure(GRASP)to construct an initial solution for the MVPPDP.Our approaches first cluster the search space in order to reduce its dimensionality,then use GRASP to build routes for each cluster.We compared our results with state-of-the-art construction heuristics that have been used to construct initial solutions to this problem.Experimental results show that our proposed algorithms contribute to achieving excellent performance in terms of both quality of solutions and processing time.展开更多
We study a variety of multi-vehicle generalizations of the Stacker Crane Problem(SCP).The input consists of a mixed graph G=(V,E,A)with vertex set V,edge set E and arc set A,and a nonnegative integer cost function c o...We study a variety of multi-vehicle generalizations of the Stacker Crane Problem(SCP).The input consists of a mixed graph G=(V,E,A)with vertex set V,edge set E and arc set A,and a nonnegative integer cost function c on E∪A.We consider the following three problems:(1)k-depot SCP(k-DSCP).There is a depot set D⊆V containing k distinct depots.The goal is to determine a collection of k closed walks including all the arcs of A such that the total cost of the closed walks is minimized,where each closed walk corresponds to the route of one vehicle and has to start from a distinct depot and return to it.(2)k-SCP.There are no given depots,and each vehicle may start from any vertex and then go back to it.The objective is to find a collection of k closed walks including all the arcs of A such that the total cost of the closed walks is minimized.(3)k-depot Stacker Crane Path Problem(k-DSCPP).There is a depot set D⊆V containing k distinct depots.The aim is to find k(open)walks including all the arcs of A such that the total cost of the walks is minimized,where each(open)walk has to start from a distinct depot but may end at any vertex.We present the first constant-factor approximation algorithms for all the above three problems.To be specific,we give 3-approximation algorithms for the k-DSCP,the k-SCP and the k-DSCPP.If the costs of the arcs are symmetric,i.e.,for every arc there is a parallel edge of no greater cost,we develop better algorithms with approximation ratios max{9/5,2−1/2k+1},2,2,respectively.All the proposed algorithms have a time complexity of O(|V|3)except that the two 2-approximation algorithms run in O(|V|2log|V|)time.展开更多
The vehicle routing problem(VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the res...The vehicle routing problem(VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups(VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, Solomon benchmark datasets and extended Solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate.展开更多
基金supported by the National Key R&D Program of China(2018AAA0101203)the National Natural Science Foundation of China(61673403,71601191)the JSPS KAKENHI(JP17K12751)。
文摘The multitrip pickup and delivery problem with time windows and manpower planning(MTPDPTW-MP)determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP(MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection(MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.
文摘It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
基金Deanship of scientific research for funding and supporting this research through the initiative of DSR Graduate Students Research Support(GSR).
文摘Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-commerce increases tremendously,the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction.One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem(MVPPDP),where a selected set of pickup and delivery customers need to be served within certain allowed trip time.In this paper,we proposed hybrid clustering algorithms with the greedy randomised adaptive search procedure(GRASP)to construct an initial solution for the MVPPDP.Our approaches first cluster the search space in order to reduce its dimensionality,then use GRASP to build routes for each cluster.We compared our results with state-of-the-art construction heuristics that have been used to construct initial solutions to this problem.Experimental results show that our proposed algorithms contribute to achieving excellent performance in terms of both quality of solutions and processing time.
基金This research was supported by the National Natural Science Foundation of China(Nos.11671135 and 11871213)the Natural Science Foundation of Shanghai(No.19ZR1411800)。
文摘We study a variety of multi-vehicle generalizations of the Stacker Crane Problem(SCP).The input consists of a mixed graph G=(V,E,A)with vertex set V,edge set E and arc set A,and a nonnegative integer cost function c on E∪A.We consider the following three problems:(1)k-depot SCP(k-DSCP).There is a depot set D⊆V containing k distinct depots.The goal is to determine a collection of k closed walks including all the arcs of A such that the total cost of the closed walks is minimized,where each closed walk corresponds to the route of one vehicle and has to start from a distinct depot and return to it.(2)k-SCP.There are no given depots,and each vehicle may start from any vertex and then go back to it.The objective is to find a collection of k closed walks including all the arcs of A such that the total cost of the closed walks is minimized.(3)k-depot Stacker Crane Path Problem(k-DSCPP).There is a depot set D⊆V containing k distinct depots.The aim is to find k(open)walks including all the arcs of A such that the total cost of the walks is minimized,where each(open)walk has to start from a distinct depot but may end at any vertex.We present the first constant-factor approximation algorithms for all the above three problems.To be specific,we give 3-approximation algorithms for the k-DSCP,the k-SCP and the k-DSCPP.If the costs of the arcs are symmetric,i.e.,for every arc there is a parallel edge of no greater cost,we develop better algorithms with approximation ratios max{9/5,2−1/2k+1},2,2,respectively.All the proposed algorithms have a time complexity of O(|V|3)except that the two 2-approximation algorithms run in O(|V|2log|V|)time.
基金Project supported by the National Natural Science Foundation of China(No.51138003)the National Social Science Foundation of Chongqing of China(No.2013YBJJ035)
文摘The vehicle routing problem(VRP) is a well-known combinatorial optimization issue in transportation and logistics network systems. There exist several limitations associated with the traditional VRP. Releasing the restricted conditions of traditional VRP has become a research focus in the past few decades. The vehicle routing problem with split deliveries and pickups(VRPSPDP) is particularly proposed to release the constraints on the visiting times per customer and vehicle capacity, that is, to allow the deliveries and pickups for each customer to be simultaneously split more than once. Few studies have focused on the VRPSPDP problem. In this paper we propose a two-stage heuristic method integrating the initial heuristic algorithm and hybrid heuristic algorithm to study the VRPSPDP problem. To validate the proposed algorithm, Solomon benchmark datasets and extended Solomon benchmark datasets were modified to compare with three other popular algorithms. A total of 18 datasets were used to evaluate the effectiveness of the proposed method. The computational results indicated that the proposed algorithm is superior to these three algorithms for VRPSPDP in terms of total travel cost and average loading rate.