Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous sys...Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. Methods 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg.bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg.bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Results Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Conclusion Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects.展开更多
Objective:Myricetin 3-O-galactoside is an active compound with pharmaceutical potential.The insufficient supply of this compound becomes a bottleneck in the druggability study of myricetin 3-Ogalactoside.Thus,it is ne...Objective:Myricetin 3-O-galactoside is an active compound with pharmaceutical potential.The insufficient supply of this compound becomes a bottleneck in the druggability study of myricetin 3-Ogalactoside.Thus,it is necessary to develop a biosynthetic process for myricetin 3-O-galactoside through metabolic engineering.Methods:Two genes OcSUS1 and OcUGE1 encoding sucrose synthase and UDP-glucose 4-epimerase were introduced into BL21(DE3)to reconstruct a UDP-D-galactose(UDP-Gal)biosynthetic pathway in Escherichia coli.The resultant chassis strain was able to produce UDP-Gal.Subsequently,a flavonol 3-O-galactosyltransferase DkFGT gene was transformed into the chassis strain producing UDP-Gal.An artificial pathway for myricetin 3-O-galactoside biosynthesis was thus constructed in E.coli.Results:The obtained engineered strain was demonstrated to be capable of producing myricetin 3-Ogalactoside,reaching 29.7 mg/L.Conclusion:Biosynthesis of myricetin 3-O-galactoside through engineered E.coli could be achieved.This result lays the foundation for the large-scale preparation of myricetin 3-O-galactoside.展开更多
A new flavonoidic glycoside,tricin-4’-O-β-L-arabinoside(1) was isolated from the leaves of Alstonia macrophylla along with two known flavonoids,vitexin and myricetin-3′-rhamnoside-3-O-galactoside.Their structures w...A new flavonoidic glycoside,tricin-4’-O-β-L-arabinoside(1) was isolated from the leaves of Alstonia macrophylla along with two known flavonoids,vitexin and myricetin-3′-rhamnoside-3-O-galactoside.Their structures were established by chemical and spectral evidences.The known compounds were reported for the first time from this plant.Moreover compound 1 was tested for antifungal and antibacterial activities.展开更多
Objectives:This study was conducted to investigate the xanthine oxidase(XO)inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle,and to illustrate the underlying mechanism of the most active...Objectives:This study was conducted to investigate the xanthine oxidase(XO)inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle,and to illustrate the underlying mechanism of the most active anthocyanin delphinidin-3-O-sambubioside.Materials and Methods:Eighteen monomeric anthocyanins were prepared and purified in our laboratory.The inhibitory properties of anthocyanins were investigated by in vitro inhibitory activity studies and fluorescence quenching studies;the inhibitory mechanism was explored through kinetic studies,fluorescence quenching studies,circular dichroism analysis and computational docking simulations.Results:XO inhibitory activities of anthocyanins were related to the structures of B rings and glycosides.Among all the tested anthocyanins,delphinidin-3-O-sambubioside showed the most potent inhibitory activity with an IC_(50) of 17.1μmol/L,which was comparable to the positive control allopurinol.Spectroscopic results revealed that delphinidin-3-O-sambubioside could spontaneously interact with XO and induce conformational changes.Computational docking study indicated that delphinidin-3-O-sambubioside could bind to XO with a proper orientation,stably formed π-π interactions and hydrogen bonds with key residues,thus preventing the substrate from entering the active pocket.Conclusions:In brief,our study identified delphinidin-3-O-sambubioside as a potent XO inhibitor from natural anthocyanins,which is potentially applicable for prevention and treatment of hyperuricemia.展开更多
基金supported by the grant of National Natural Science Foundation of Tianjin(09JCYBJC12900)
文摘Objective To investigate whether the antioxidation and the regulation on the Extracellular Regulated Protein Kinases (ERK) signaling pathway are involved in the protective effects of blueberry on central nervous system. Methods 30 Senescence-accelerated mice prone 8 (SAMP8) mice were divided into three groups and treated with normal diet, blueberry extracts (200 mg/kg.bw/day) and cyaniding-3-O-galactoside (Cy-3-GAL) (50 mg/kg.bw/day) from blueberry for 8 weeks. 10 SAMR1 mice were set as control group. The capacity of spatial memory was assessed by Passive avoidance task and Morris water maze. Histological analyses on hippocampus were completed. Malondialdehyde (MDA) levels, Superoxide Dismutase (SOD) activity and the expression of ERK were detected. Results Both Cy-3-GAL and blueberry extracts were shown effective functions to relieve cellular injury, improve hippocampal neurons survival and inhibit the pyramidal cell layer damage. Cy-3-GAL and blueberry extracts also increased SOD activity and reduced MDA content in brain tissues and plasma, and increased hippocampal phosphorylated ERK (p-ERK) expression in SAMP8 mice. Further more, the passive avoidance task test showed that both the latency time and the number of errors were improved by Cy-3-GAL treatment, and the Morris Water Maze test showed significant decreases of latency were detected by Cy-3-GAL and blueberry extracts treatment on day 4. Conclusion Blueberry extracts may reverse the declines of cognitive and behavioral function in the ageing process through several pathways, including enhancing the capacity of antioxidation, altering stress signaling. Cy-3-GAL may be an important active ingredient for these biological effects.
基金supported by National Mega-project for Innovative Drugs(2018ZX09711001-006)CAMS Innovation Fund for Medical Sciences(CIFMS)(2016-I2M-3-012 and 2019-I2M-1005)+1 种基金Disciplines Construction Project(201920100801)Beijing Natural Science Foundation(7172143)。
文摘Objective:Myricetin 3-O-galactoside is an active compound with pharmaceutical potential.The insufficient supply of this compound becomes a bottleneck in the druggability study of myricetin 3-Ogalactoside.Thus,it is necessary to develop a biosynthetic process for myricetin 3-O-galactoside through metabolic engineering.Methods:Two genes OcSUS1 and OcUGE1 encoding sucrose synthase and UDP-glucose 4-epimerase were introduced into BL21(DE3)to reconstruct a UDP-D-galactose(UDP-Gal)biosynthetic pathway in Escherichia coli.The resultant chassis strain was able to produce UDP-Gal.Subsequently,a flavonol 3-O-galactosyltransferase DkFGT gene was transformed into the chassis strain producing UDP-Gal.An artificial pathway for myricetin 3-O-galactoside biosynthesis was thus constructed in E.coli.Results:The obtained engineered strain was demonstrated to be capable of producing myricetin 3-Ogalactoside,reaching 29.7 mg/L.Conclusion:Biosynthesis of myricetin 3-O-galactoside through engineered E.coli could be achieved.This result lays the foundation for the large-scale preparation of myricetin 3-O-galactoside.
文摘A new flavonoidic glycoside,tricin-4’-O-β-L-arabinoside(1) was isolated from the leaves of Alstonia macrophylla along with two known flavonoids,vitexin and myricetin-3′-rhamnoside-3-O-galactoside.Their structures were established by chemical and spectral evidences.The known compounds were reported for the first time from this plant.Moreover compound 1 was tested for antifungal and antibacterial activities.
文摘Objectives:This study was conducted to investigate the xanthine oxidase(XO)inhibitory activities of 18 monomeric anthocyanins from berry fruits and roselle,and to illustrate the underlying mechanism of the most active anthocyanin delphinidin-3-O-sambubioside.Materials and Methods:Eighteen monomeric anthocyanins were prepared and purified in our laboratory.The inhibitory properties of anthocyanins were investigated by in vitro inhibitory activity studies and fluorescence quenching studies;the inhibitory mechanism was explored through kinetic studies,fluorescence quenching studies,circular dichroism analysis and computational docking simulations.Results:XO inhibitory activities of anthocyanins were related to the structures of B rings and glycosides.Among all the tested anthocyanins,delphinidin-3-O-sambubioside showed the most potent inhibitory activity with an IC_(50) of 17.1μmol/L,which was comparable to the positive control allopurinol.Spectroscopic results revealed that delphinidin-3-O-sambubioside could spontaneously interact with XO and induce conformational changes.Computational docking study indicated that delphinidin-3-O-sambubioside could bind to XO with a proper orientation,stably formed π-π interactions and hydrogen bonds with key residues,thus preventing the substrate from entering the active pocket.Conclusions:In brief,our study identified delphinidin-3-O-sambubioside as a potent XO inhibitor from natural anthocyanins,which is potentially applicable for prevention and treatment of hyperuricemia.